IEEE Electrification - March 2022 - 73

Figure 7. The final design and prototype of the electric scooter.
minimum distance of 70 km per charge, the battery pack
capacity would be
Batterypackcapacity
70 km
=
=
25.74 km
.
kWh
kWhkWh.
2723 ,
As defined, the battery pack's voltage is 100 V. When
the battery cells are 18650-nickel-cobalt-aluminiumoxide-lithium-ion
battery, with a voltage of 4.2 V and
3.4 Ah, the required battery cells are as follows:
Cellsinseries Individual cell voltage
Batterypack voltage
.
Cellsinparallel
=
=
Batterypackvoltage
Battery pack energy
3,000 Wh
100 V
==
=
23.824
42
100
.
cellsinseriescells
: individual
cell energy
:3.4 Ah . nine cells
There are 24 cells in series × nine
cells in parallel = 216 cell batteries.
The battery pack comprises a
certain configuration of parallel
and series cells, BMS, current sensor,
sockets, and cover. Similar to
the BLDC motor and controller,
the BMS is also designed and
developed from scratch. This
ensures that the BMS communicates
with the controller and its
integrated vehicle computer in
the electric scooter. Moreover, it
protects the battery pack from
overcharging and overdischarging
to ensure its health and safety.
The other components to be
used in this electric scooter were
Laboratory Testing
Laboratory testing was performed, both on the components
and the electric motorcycle levels. A dynamometer was
5.1
4.5
3
4
3.5
2.5
2
1.5
0.5
1
Speed (r/min)
Figure 8. The dynamometer testing results.
IEEE Electrification Magazine / MARCH 2022
73
37.7
35
30
25
20
15
10
5
V
V
sourced from existing industries in Indonesia using
codesign and cocreating methods. Once the detailed
engineering design is complete, the next phase
involves developing prototypes of the electric scooter.
The prototype was then tested in the laboratory and on
the road to validate its real-life performance. Subsequently,
design revisions were performed before the
prototype was ready for mass production. The final
design and prototype of the electric scooter is depicted
in Figure 7.
Product Testing and Validation
The prototype was then tested in the laboratory and on
the road to validate its real-life performance.
0.5
Power (hp)
Torque (Nm)
500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000

IEEE Electrification - March 2022

Table of Contents for the Digital Edition of IEEE Electrification - March 2022

Contents
IEEE Electrification - March 2022 - Cover1
IEEE Electrification - March 2022 - Cover2
IEEE Electrification - March 2022 - Contents
IEEE Electrification - March 2022 - 2
IEEE Electrification - March 2022 - 3
IEEE Electrification - March 2022 - 4
IEEE Electrification - March 2022 - 5
IEEE Electrification - March 2022 - 6
IEEE Electrification - March 2022 - 7
IEEE Electrification - March 2022 - 8
IEEE Electrification - March 2022 - 9
IEEE Electrification - March 2022 - 10
IEEE Electrification - March 2022 - 11
IEEE Electrification - March 2022 - 12
IEEE Electrification - March 2022 - 13
IEEE Electrification - March 2022 - 14
IEEE Electrification - March 2022 - 15
IEEE Electrification - March 2022 - 16
IEEE Electrification - March 2022 - 17
IEEE Electrification - March 2022 - 18
IEEE Electrification - March 2022 - 19
IEEE Electrification - March 2022 - 20
IEEE Electrification - March 2022 - 21
IEEE Electrification - March 2022 - 22
IEEE Electrification - March 2022 - 23
IEEE Electrification - March 2022 - 24
IEEE Electrification - March 2022 - 25
IEEE Electrification - March 2022 - 26
IEEE Electrification - March 2022 - 27
IEEE Electrification - March 2022 - 28
IEEE Electrification - March 2022 - 29
IEEE Electrification - March 2022 - 30
IEEE Electrification - March 2022 - 31
IEEE Electrification - March 2022 - 32
IEEE Electrification - March 2022 - 33
IEEE Electrification - March 2022 - 34
IEEE Electrification - March 2022 - 35
IEEE Electrification - March 2022 - 36
IEEE Electrification - March 2022 - 37
IEEE Electrification - March 2022 - 38
IEEE Electrification - March 2022 - 39
IEEE Electrification - March 2022 - 40
IEEE Electrification - March 2022 - 41
IEEE Electrification - March 2022 - 42
IEEE Electrification - March 2022 - 43
IEEE Electrification - March 2022 - 44
IEEE Electrification - March 2022 - 45
IEEE Electrification - March 2022 - 46
IEEE Electrification - March 2022 - 47
IEEE Electrification - March 2022 - 48
IEEE Electrification - March 2022 - 49
IEEE Electrification - March 2022 - 50
IEEE Electrification - March 2022 - 51
IEEE Electrification - March 2022 - 52
IEEE Electrification - March 2022 - 53
IEEE Electrification - March 2022 - 54
IEEE Electrification - March 2022 - 55
IEEE Electrification - March 2022 - 56
IEEE Electrification - March 2022 - 57
IEEE Electrification - March 2022 - 58
IEEE Electrification - March 2022 - 59
IEEE Electrification - March 2022 - 60
IEEE Electrification - March 2022 - 61
IEEE Electrification - March 2022 - 62
IEEE Electrification - March 2022 - 63
IEEE Electrification - March 2022 - 64
IEEE Electrification - March 2022 - 65
IEEE Electrification - March 2022 - 66
IEEE Electrification - March 2022 - 67
IEEE Electrification - March 2022 - 68
IEEE Electrification - March 2022 - 69
IEEE Electrification - March 2022 - 70
IEEE Electrification - March 2022 - 71
IEEE Electrification - March 2022 - 72
IEEE Electrification - March 2022 - 73
IEEE Electrification - March 2022 - 74
IEEE Electrification - March 2022 - 75
IEEE Electrification - March 2022 - 76
IEEE Electrification - March 2022 - 77
IEEE Electrification - March 2022 - 78
IEEE Electrification - March 2022 - 79
IEEE Electrification - March 2022 - 80
IEEE Electrification - March 2022 - Cover3
IEEE Electrification - March 2022 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com