IEEE Electrification - September 2019 - 24
electricity and transportation systems for ensuring
power network security during ice storms.
This emergency preparedness is implemented following
long- and midterm ice storm forecasts, while the emergency operation is a follow-up strategy during the ice storm
that applies the short-term ice storm forecast with realtime ice storm monitoring. The emergency preparedness
determines the long-term, day-ahead unit commitment,
while the emergency operation determines the real-time
de-icing schedule (DIS) and real-time power system
dispatch. The objective of the transportation operator is to
ensure that MDIDs can be routed and delivered to de-icing
sites quickly. Therefore, the emergency preparedness determines the optimal number and regional pre-positioning of
MDIDs, and the emergency operation determines the local
routing of MDIDs when the vehicles are called upon. The
objective of the grid operator is to maintain power network
security by de-icing the lines and ensuring the load supply
by the optimal dispatch of generating units.
Introduction to the State Key
Laboratory in China
Figure 1. Damaged transmission lines during the 2008 South China
ice storm. (Source: State Key Laboratory; used with permission.)
After the ice storm in 2008, the State Grid Hunan Electric Power Company established the State Key Laboratory of Disaster Prevention and Reduction for Power Grid
Transmission and Distribution Equipment to enhance
power network resilience against ice storms. The State
Key Laboratory consists of indoor and outdoor facilities,
as depicted in Figures 4 and 5. The indoor facility, the
most comprehensive laboratory in the world for analyzing icy conditions, can simulate icing and de-icing processes for ultrahigh-voltage transmission lines and
insulators (i.e., 500 kV and below). The outdoor facility,
located in the Xiaoshajiang Mountains, Hunan, is
equipped with a 500-kV transmission system infrastructure. The yearly ice storms in the Xiaoshajiang
Mountains provide an excellent opportunity for testing
the icing and de-icing equipment.
Ice Storm Severity Forecast and Monitoring
Transmission lines could be covered with ice during ice
storms and damaged if the covered ice thickness exceeds
certain thresholds. The ice cover on power lines could
Ice Storm Severity Forecast and Monitoring
Ice Storm Forecast
Long-Term Forecast
Midterm Forecast
Short-Term Forecast
Figure 2. A tower damaged during the 2008 ice storm. (Source:
Real-Time Ice
Thickness Monitoring
De-Icing Technique
State Key Laboratory; used with permission.)
TABLE 1. The damaged transmission infrastructure
Ice Storm Monitoring
Fixed De-Icing Device
MDID
Ultrahigh-Voltage Line
Transmission and
Distribution Line
during the 2008 South China ice storm.
24
Voltage Level (kV)
Damaged Towers
Damaged Lines
500
182
159
220
633
241
110
1,427
646
35
2,031
1,369
10
63,036
47,898
I E E E E l e c t r i f i cati o n M agaz ine / SEPTEMBER 2019
Emergency Preparedness and Operation
Electric System
Unit Commitment
Generation Dispatch
De-Icing Schedule
Transportation System
Number of Employed MDID
MDID Pre-Position
MDID Routing
Figure 3. The proposed de-icing method for the resilience enhancement strategy.
IEEE Electrification - September 2019
Table of Contents for the Digital Edition of IEEE Electrification - September 2019
Contents
IEEE Electrification - September 2019 - Cover1
IEEE Electrification - September 2019 - Cover2
IEEE Electrification - September 2019 - Contents
IEEE Electrification - September 2019 - 2
IEEE Electrification - September 2019 - 3
IEEE Electrification - September 2019 - 4
IEEE Electrification - September 2019 - 5
IEEE Electrification - September 2019 - 6
IEEE Electrification - September 2019 - 7
IEEE Electrification - September 2019 - 8
IEEE Electrification - September 2019 - 9
IEEE Electrification - September 2019 - 10
IEEE Electrification - September 2019 - 11
IEEE Electrification - September 2019 - 12
IEEE Electrification - September 2019 - 13
IEEE Electrification - September 2019 - 14
IEEE Electrification - September 2019 - 15
IEEE Electrification - September 2019 - 16
IEEE Electrification - September 2019 - 17
IEEE Electrification - September 2019 - 18
IEEE Electrification - September 2019 - 19
IEEE Electrification - September 2019 - 20
IEEE Electrification - September 2019 - 21
IEEE Electrification - September 2019 - 22
IEEE Electrification - September 2019 - 23
IEEE Electrification - September 2019 - 24
IEEE Electrification - September 2019 - 25
IEEE Electrification - September 2019 - 26
IEEE Electrification - September 2019 - 27
IEEE Electrification - September 2019 - 28
IEEE Electrification - September 2019 - 29
IEEE Electrification - September 2019 - 30
IEEE Electrification - September 2019 - 31
IEEE Electrification - September 2019 - 32
IEEE Electrification - September 2019 - 33
IEEE Electrification - September 2019 - 34
IEEE Electrification - September 2019 - 35
IEEE Electrification - September 2019 - 36
IEEE Electrification - September 2019 - 37
IEEE Electrification - September 2019 - 38
IEEE Electrification - September 2019 - 39
IEEE Electrification - September 2019 - 40
IEEE Electrification - September 2019 - 41
IEEE Electrification - September 2019 - 42
IEEE Electrification - September 2019 - 43
IEEE Electrification - September 2019 - 44
IEEE Electrification - September 2019 - 45
IEEE Electrification - September 2019 - 46
IEEE Electrification - September 2019 - 47
IEEE Electrification - September 2019 - 48
IEEE Electrification - September 2019 - 49
IEEE Electrification - September 2019 - 50
IEEE Electrification - September 2019 - 51
IEEE Electrification - September 2019 - 52
IEEE Electrification - September 2019 - 53
IEEE Electrification - September 2019 - 54
IEEE Electrification - September 2019 - 55
IEEE Electrification - September 2019 - 56
IEEE Electrification - September 2019 - 57
IEEE Electrification - September 2019 - 58
IEEE Electrification - September 2019 - 59
IEEE Electrification - September 2019 - 60
IEEE Electrification - September 2019 - 61
IEEE Electrification - September 2019 - 62
IEEE Electrification - September 2019 - 63
IEEE Electrification - September 2019 - 64
IEEE Electrification - September 2019 - 65
IEEE Electrification - September 2019 - 66
IEEE Electrification - September 2019 - 67
IEEE Electrification - September 2019 - 68
IEEE Electrification - September 2019 - 69
IEEE Electrification - September 2019 - 70
IEEE Electrification - September 2019 - 71
IEEE Electrification - September 2019 - 72
IEEE Electrification - September 2019 - 73
IEEE Electrification - September 2019 - 74
IEEE Electrification - September 2019 - 75
IEEE Electrification - September 2019 - 76
IEEE Electrification - September 2019 - 77
IEEE Electrification - September 2019 - 78
IEEE Electrification - September 2019 - 79
IEEE Electrification - September 2019 - 80
IEEE Electrification - September 2019 - 81
IEEE Electrification - September 2019 - 82
IEEE Electrification - September 2019 - 83
IEEE Electrification - September 2019 - 84
IEEE Electrification - September 2019 - 85
IEEE Electrification - September 2019 - 86
IEEE Electrification - September 2019 - 87
IEEE Electrification - September 2019 - 88
IEEE Electrification - September 2019 - Cover3
IEEE Electrification - September 2019 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com