IEEE Electrification - September 2020 - 68

recently dedicated to various aspects of fast charging,
the framework of the future fast-charging system
begins to take shape.

Figure 9 presents an intelligent battery TMS (iBTMS)
framework to analyze, control, and optimize fast-charging-capable Li-ion battery packs. The future iBTMS
could utilize the PCC as a TMS and integrate the normal
BMS functions. The temperature of the battery pack
will be increased before the charging step to improve
the electrochemical kinetics during charge. The temperatures will be limited by choosing the suitable wax
with the desired phase change temperature. The iBTMS
would also be able to communicate with the charger
and provide an optimal charging current command
based on the electrical and thermal status of the battery pack.
Theoretical analyses presented in the literature, and
the preliminary experimental results have shown that a
high operation temperature benefits the high-energy-density
cell's charging acceptance ability and mitigates Li plating
under an aggressive charging current. However, heat generation associated with the aggressive charging current
and the elevated temperature would substantially
increase stress on the TMS.
A PCC-based TMS could be a potential candidate for
future fast-charging-capable Li-ion battery packs. However, the PCC's high heat absorption capability can be
exploited only as long as the PCC has unmelted wax.
Beyond this point, the temperature of the battery pack will
increase at a much faster rate, which exposes the pack to
high temperatures that can potentially affect long-term
reliability and performance. Therefore, the PCC needs to
be extensively tested and characterized before fast-charging algorithms can be implemented.
Moreover, the control protocols need to monitor the electrical and thermal status of the battery pack to adjust the
charging current command, maintain optimal pack temperature necessary to enable optimized lithiation kinetics and
mass transport, and prevent the pack from reaching high
temperatures that cause rapid aging and safety concern.

Temperature (°C)

60
No PCC
With PCC
55

50

45

0

0.5

1
1.5
Capacity (Ah)

2

2.5

Figure 6. Temperature curves during the 2-C charge of the first cycle.

0-1

Time = 900 s, Surface: Temperature (°C)
47.6
47.4

-1

1

47.2
47

-2

46.8
46.6
46.4
46.2
-3

46.1

Figure 7. The temperature gradient of the pack at the end of the
2-C charge.

Temperature (°C)

1,000
T2

T3

T4

T6

T7

T8

T9

T5
T10
8
9
2
1

100

10

(a)

T1

0

50

100 150

10
5
3

6

7

4

200 250 300
Time (s)
(b)

350 400

Figure 8. (a) The nail penetration test setup inside the blast chamber. (b) The temperature profile of the battery pack during the nail penetration test.

68

I E E E E l e c t r i f i cati o n M agaz ine / SEPTEMBER 2020



IEEE Electrification - September 2020

Table of Contents for the Digital Edition of IEEE Electrification - September 2020

Contents
IEEE Electrification - September 2020 - Cover1
IEEE Electrification - September 2020 - Cover2
IEEE Electrification - September 2020 - Contents
IEEE Electrification - September 2020 - 2
IEEE Electrification - September 2020 - 3
IEEE Electrification - September 2020 - 4
IEEE Electrification - September 2020 - 5
IEEE Electrification - September 2020 - 6
IEEE Electrification - September 2020 - 7
IEEE Electrification - September 2020 - 8
IEEE Electrification - September 2020 - 9
IEEE Electrification - September 2020 - 10
IEEE Electrification - September 2020 - 11
IEEE Electrification - September 2020 - 12
IEEE Electrification - September 2020 - 13
IEEE Electrification - September 2020 - 14
IEEE Electrification - September 2020 - 15
IEEE Electrification - September 2020 - 16
IEEE Electrification - September 2020 - 17
IEEE Electrification - September 2020 - 18
IEEE Electrification - September 2020 - 19
IEEE Electrification - September 2020 - 20
IEEE Electrification - September 2020 - 21
IEEE Electrification - September 2020 - 22
IEEE Electrification - September 2020 - 23
IEEE Electrification - September 2020 - 24
IEEE Electrification - September 2020 - 25
IEEE Electrification - September 2020 - 26
IEEE Electrification - September 2020 - 27
IEEE Electrification - September 2020 - 28
IEEE Electrification - September 2020 - 29
IEEE Electrification - September 2020 - 30
IEEE Electrification - September 2020 - 31
IEEE Electrification - September 2020 - 32
IEEE Electrification - September 2020 - 33
IEEE Electrification - September 2020 - 34
IEEE Electrification - September 2020 - 35
IEEE Electrification - September 2020 - 36
IEEE Electrification - September 2020 - 37
IEEE Electrification - September 2020 - 38
IEEE Electrification - September 2020 - 39
IEEE Electrification - September 2020 - 40
IEEE Electrification - September 2020 - 41
IEEE Electrification - September 2020 - 42
IEEE Electrification - September 2020 - 43
IEEE Electrification - September 2020 - 44
IEEE Electrification - September 2020 - 45
IEEE Electrification - September 2020 - 46
IEEE Electrification - September 2020 - 47
IEEE Electrification - September 2020 - 48
IEEE Electrification - September 2020 - 49
IEEE Electrification - September 2020 - 50
IEEE Electrification - September 2020 - 51
IEEE Electrification - September 2020 - 52
IEEE Electrification - September 2020 - 53
IEEE Electrification - September 2020 - 54
IEEE Electrification - September 2020 - 55
IEEE Electrification - September 2020 - 56
IEEE Electrification - September 2020 - 57
IEEE Electrification - September 2020 - 58
IEEE Electrification - September 2020 - 59
IEEE Electrification - September 2020 - 60
IEEE Electrification - September 2020 - 61
IEEE Electrification - September 2020 - 62
IEEE Electrification - September 2020 - 63
IEEE Electrification - September 2020 - 64
IEEE Electrification - September 2020 - 65
IEEE Electrification - September 2020 - 66
IEEE Electrification - September 2020 - 67
IEEE Electrification - September 2020 - 68
IEEE Electrification - September 2020 - 69
IEEE Electrification - September 2020 - 70
IEEE Electrification - September 2020 - 71
IEEE Electrification - September 2020 - 72
IEEE Electrification - September 2020 - 73
IEEE Electrification - September 2020 - 74
IEEE Electrification - September 2020 - 75
IEEE Electrification - September 2020 - 76
IEEE Electrification - September 2020 - 77
IEEE Electrification - September 2020 - 78
IEEE Electrification - September 2020 - 79
IEEE Electrification - September 2020 - 80
IEEE Electrification - September 2020 - 81
IEEE Electrification - September 2020 - 82
IEEE Electrification - September 2020 - 83
IEEE Electrification - September 2020 - 84
IEEE Electrification - September 2020 - 85
IEEE Electrification - September 2020 - 86
IEEE Electrification - September 2020 - 87
IEEE Electrification - September 2020 - 88
IEEE Electrification - September 2020 - 89
IEEE Electrification - September 2020 - 90
IEEE Electrification - September 2020 - 91
IEEE Electrification - September 2020 - 92
IEEE Electrification - September 2020 - 93
IEEE Electrification - September 2020 - 94
IEEE Electrification - September 2020 - 95
IEEE Electrification - September 2020 - 96
IEEE Electrification - September 2020 - 97
IEEE Electrification - September 2020 - 98
IEEE Electrification - September 2020 - 99
IEEE Electrification - September 2020 - 100
IEEE Electrification - September 2020 - 101
IEEE Electrification - September 2020 - 102
IEEE Electrification - September 2020 - 103
IEEE Electrification - September 2020 - 104
IEEE Electrification - September 2020 - Cover3
IEEE Electrification - September 2020 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com