IEEE Electrification - September 2021 - 126
caused by ice storms is much less in comparison. The
portable de-icing system has significant economic and
social benefits and can ensure the distribution network
resilience in winter.
MDIV Routing
DIS
Transportation
System Operation
Distribution
System Operation
Figure 8. A resilience enhancement planning framework.
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Reliability
Failure Probability
02 46 810
Ice Thickness (mm)
12 14 16
Figure 9. Failure probability and system reliability in relation to ice
thickness on the line.
De-Icing Scheduling for Distribution
Network Resilience
Considering the power system resilience in an ice storm,
a real-time operation planning strategy is required to
minimize the adverse impact of the storm on distribution
networks. The resilience enhancement plan (REP)
considered in this article, and depicted in Figure 8,
includes four components, i.e., de-icing schedule (DIS),
MDIV routing, transportation system operation, and distribution
system operation. As depicted in Figure 9,
when the ice thickness exceeds a given threshold, the
distribution system outage probability will increase, and
its reliability will decrease. DIS is the practice of placing
MDIVs in proper de-icing depots. MDIV routing is the
process of routing MDIVs to proper de-icing locations for
removing the ice from power distribution lines before
the ice thickness reaches the threshold level. This
threshold is determined by power system operators and
the REP involves employing one of the de-icing techniques
mentioned in the previous section. Figure 10
illustrates the REP during an ice storm, where the deicing
process will only take a fraction of the REP time.
Most of the REP time is spend on commuting to the deicing
location and setting up the de-icing device. Figure
11 illustrates the MDIV routing from a depot to a
de-icing location. When the MDIV reaches the de-icing
location, equipment operators remove the designated
distribution line out of service, install MDIV to de-ice the
distribution line, uninstall MDIV or PDID once the job is
done, switch the de-iced line back into service, and drive
MDIV or PDID to the next de-icing location. The de-icing
process will take approximately 4 h, which depends on
the ice thickness and the de-icing current.
35
30
25
20
15
10
5
Maximum Ice Thickness
De-Icing Duration
Ice Thickness With De-Icing
Ice Thickness Without De-Icing
Time (h)
01224364860728496
In Service
Outage
Figure 10. A power distribution line with and without de-icing during an ice storm.
126 IEEE Electrification Magazine / SEPTEMBER 2021
Line State
Ice Thickness (mm)
Probability
IEEE Electrification - September 2021
Table of Contents for the Digital Edition of IEEE Electrification - September 2021
IEEE Electrification - September 2021 - Cover1
IEEE Electrification - September 2021 - Cover2
IEEE Electrification - September 2021 - 1
IEEE Electrification - September 2021 - 2
IEEE Electrification - September 2021 - 3
IEEE Electrification - September 2021 - 4
IEEE Electrification - September 2021 - 5
IEEE Electrification - September 2021 - 6
IEEE Electrification - September 2021 - 7
IEEE Electrification - September 2021 - 8
IEEE Electrification - September 2021 - 9
IEEE Electrification - September 2021 - 10
IEEE Electrification - September 2021 - 11
IEEE Electrification - September 2021 - 12
IEEE Electrification - September 2021 - 13
IEEE Electrification - September 2021 - 14
IEEE Electrification - September 2021 - 15
IEEE Electrification - September 2021 - 16
IEEE Electrification - September 2021 - 17
IEEE Electrification - September 2021 - 18
IEEE Electrification - September 2021 - 19
IEEE Electrification - September 2021 - 20
IEEE Electrification - September 2021 - 21
IEEE Electrification - September 2021 - 22
IEEE Electrification - September 2021 - 23
IEEE Electrification - September 2021 - 24
IEEE Electrification - September 2021 - 25
IEEE Electrification - September 2021 - 26
IEEE Electrification - September 2021 - 27
IEEE Electrification - September 2021 - 28
IEEE Electrification - September 2021 - 29
IEEE Electrification - September 2021 - 30
IEEE Electrification - September 2021 - 31
IEEE Electrification - September 2021 - 32
IEEE Electrification - September 2021 - 33
IEEE Electrification - September 2021 - 34
IEEE Electrification - September 2021 - 35
IEEE Electrification - September 2021 - 36
IEEE Electrification - September 2021 - 37
IEEE Electrification - September 2021 - 38
IEEE Electrification - September 2021 - 39
IEEE Electrification - September 2021 - 40
IEEE Electrification - September 2021 - 41
IEEE Electrification - September 2021 - 42
IEEE Electrification - September 2021 - 43
IEEE Electrification - September 2021 - 44
IEEE Electrification - September 2021 - 45
IEEE Electrification - September 2021 - 46
IEEE Electrification - September 2021 - 47
IEEE Electrification - September 2021 - 48
IEEE Electrification - September 2021 - 49
IEEE Electrification - September 2021 - 50
IEEE Electrification - September 2021 - 51
IEEE Electrification - September 2021 - 52
IEEE Electrification - September 2021 - 53
IEEE Electrification - September 2021 - 54
IEEE Electrification - September 2021 - 55
IEEE Electrification - September 2021 - 56
IEEE Electrification - September 2021 - 57
IEEE Electrification - September 2021 - 58
IEEE Electrification - September 2021 - 59
IEEE Electrification - September 2021 - 60
IEEE Electrification - September 2021 - 61
IEEE Electrification - September 2021 - 62
IEEE Electrification - September 2021 - 63
IEEE Electrification - September 2021 - 64
IEEE Electrification - September 2021 - 65
IEEE Electrification - September 2021 - 66
IEEE Electrification - September 2021 - 67
IEEE Electrification - September 2021 - 68
IEEE Electrification - September 2021 - 69
IEEE Electrification - September 2021 - 70
IEEE Electrification - September 2021 - 71
IEEE Electrification - September 2021 - 72
IEEE Electrification - September 2021 - 73
IEEE Electrification - September 2021 - 74
IEEE Electrification - September 2021 - 75
IEEE Electrification - September 2021 - 76
IEEE Electrification - September 2021 - 77
IEEE Electrification - September 2021 - 78
IEEE Electrification - September 2021 - 79
IEEE Electrification - September 2021 - 80
IEEE Electrification - September 2021 - 81
IEEE Electrification - September 2021 - 82
IEEE Electrification - September 2021 - 83
IEEE Electrification - September 2021 - 84
IEEE Electrification - September 2021 - 85
IEEE Electrification - September 2021 - 86
IEEE Electrification - September 2021 - 87
IEEE Electrification - September 2021 - 88
IEEE Electrification - September 2021 - 89
IEEE Electrification - September 2021 - 90
IEEE Electrification - September 2021 - 91
IEEE Electrification - September 2021 - 92
IEEE Electrification - September 2021 - 93
IEEE Electrification - September 2021 - 94
IEEE Electrification - September 2021 - 95
IEEE Electrification - September 2021 - 96
IEEE Electrification - September 2021 - 97
IEEE Electrification - September 2021 - 98
IEEE Electrification - September 2021 - 99
IEEE Electrification - September 2021 - 100
IEEE Electrification - September 2021 - 101
IEEE Electrification - September 2021 - 102
IEEE Electrification - September 2021 - 103
IEEE Electrification - September 2021 - 104
IEEE Electrification - September 2021 - 105
IEEE Electrification - September 2021 - 106
IEEE Electrification - September 2021 - 107
IEEE Electrification - September 2021 - 108
IEEE Electrification - September 2021 - 109
IEEE Electrification - September 2021 - 110
IEEE Electrification - September 2021 - 111
IEEE Electrification - September 2021 - 112
IEEE Electrification - September 2021 - 113
IEEE Electrification - September 2021 - 114
IEEE Electrification - September 2021 - 115
IEEE Electrification - September 2021 - 116
IEEE Electrification - September 2021 - 117
IEEE Electrification - September 2021 - 118
IEEE Electrification - September 2021 - 119
IEEE Electrification - September 2021 - 120
IEEE Electrification - September 2021 - 121
IEEE Electrification - September 2021 - 122
IEEE Electrification - September 2021 - 123
IEEE Electrification - September 2021 - 124
IEEE Electrification - September 2021 - 125
IEEE Electrification - September 2021 - 126
IEEE Electrification - September 2021 - 127
IEEE Electrification - September 2021 - 128
IEEE Electrification - September 2021 - 129
IEEE Electrification - September 2021 - 130
IEEE Electrification - September 2021 - 131
IEEE Electrification - September 2021 - 132
IEEE Electrification - September 2021 - Cover3
IEEE Electrification - September 2021 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com