IEEE Power & Energy Magazine - January/February 2016 - 38
table 1. Preparation of a long-term planning model for the RG CE.
Effort in 2007-2008
Effort in 2013
Data collection
time including data
validation process
Seven months (data exchange formats: UCTE DEF,
PSS/E, and Excel)
Two months (data exchange standard: CIM)
Model assembling
Three months, a significant manual process
20 min in ENTSO-E network modeling database
Obtain load flow
in one tool
Model size
Ten hours (including effort to apply procedures due
to using tools not fit for the purpose)
Nodes: 10,800
Lines: 14,400
Loads: 6,300
Generators: 2,050
Transformers: 3,200
will continue to improve. this was one of the reasons the
entso-e cgMes specifications were developed using the
newest iec ciM release 16 related standards. although the
processes to implement cgMes are ongoing, there is already
a positive indication that the model exchange is better. this
can be attributed to the use of a more mature ciM standard,
the cgMes conformity assessment process, the availability
of good test data, and the experience gained by experts dealing with network models exchanged using cgMes.
the entso-e's tsos are also implementing a ciM for
the purpose of operational planning network model exchanges.
this effort is presented in another article in this issue.
A CIM for Electrical Distribution Systems
a common problem for distribution utilities is that efforts
to automate and manage business processes are foiled by
incongruent data from applications supporting the planning,
constructing, maintaining, and operating of power distribution and customer interface assets. as there are many tools
available to bridge the gaps between these disparate technologies, the main show stopper for large-scale integration
is that data resides in thousands of incompatible formats and
cannot be systematically managed, integrated, or cleansed.
as depicted in Figure 5, the iec 61968 series is intended
to facilitate interapplication integration of the various distributed software application systems supporting the management of utility electrical distribution networks. it connects
disparate applications that are already built or new (legacy
or purchased applications), each supported by dissimilar
runtime environments. therefore, iec 61968 is relevant to
loosely coupled applications with more heterogeneity in languages, operating systems, protocols, and management tools.
as used in the iec 61968 series, distribution management
consists of various distributed application components for
the utility to manage electrical distribution networks. these
capabilities include monitoring and control of equipment for
power delivery, management processes to ensure system reliability, voltage management, demand-side management, outage management, work management, automated mapping,
and facilities management. the distribution management
38
ieee power & energy magazine
Nodes: 19,000
Lines: 17,600
Loads: 10,700
Generators: 14,600
Transformers: two-winding:
5,100 three-winding: 1,300
Breakers: 2,100
system could also be integrated with premise area networks
through an advanced metering infrastructure (aMi) network.
iec 61968 recommends that the semantics (i.e., the ciM)
of system interfaces of a compliant utility interapplication
infrastructure be defined using UMl. the XMl is a data
format for structured document interchange primarily on the
internet. one of its primary uses is information exchange
between different and potentially incompatible computer
systems. Using tools available from multiple sources, profiles
are modeled in UMl and then message types [XMl schema
definitions (Xsds)] are autogenerated to define the grammar/syntax of a given interface in the utility interapplication
infrastructure. predefined industry standard message types
(Xsds) are available in the iec 61968 series of standards.
however, for most enterprise integration efforts, utilities
view this series of standards as a starter kit in that they are able
to use the same approach to extend the ciM to include their
unique data requirements and then generate their required
message types. For some areas such as aMi, customization
is often not required. however, for other areas such as asset
management, work management, and customer information, it is typical that utilities have unique attributes that they
want to add on top of industry standard interfaces. While this
practice is not standards compliant, it has served a valuable
purpose, when compared with vendor-proprietary or customdeveloped interfaces, in that extending the industry standard
saves substantial design, implementation, and maintenance
costs. it also makes them more agile as business changes.
CIM for Market
the establishment of an electricity energy market requires
information to be exchanged among electricity utilities but
also from a number of participants from various sectors,
such as traders, power exchanges, aggregators of information, and meter data collectors. a harmonized approach is
necessary to define data interchanges to reduce the complexity and cost of it systems while ensuring that ongoing
quality and usability was maintained. With this objective in
mind, the iec 62325 series of standards was developed to
facilitate efficient interactions among market participants,
january/february 2016
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - January/February 2016
IEEE Power & Energy Magazine - January/February 2016 - Cover1
IEEE Power & Energy Magazine - January/February 2016 - Cover2
IEEE Power & Energy Magazine - January/February 2016 - 1
IEEE Power & Energy Magazine - January/February 2016 - 2
IEEE Power & Energy Magazine - January/February 2016 - 3
IEEE Power & Energy Magazine - January/February 2016 - 4
IEEE Power & Energy Magazine - January/February 2016 - 5
IEEE Power & Energy Magazine - January/February 2016 - 6
IEEE Power & Energy Magazine - January/February 2016 - 7
IEEE Power & Energy Magazine - January/February 2016 - 8
IEEE Power & Energy Magazine - January/February 2016 - 9
IEEE Power & Energy Magazine - January/February 2016 - 10
IEEE Power & Energy Magazine - January/February 2016 - 11
IEEE Power & Energy Magazine - January/February 2016 - 12
IEEE Power & Energy Magazine - January/February 2016 - 13
IEEE Power & Energy Magazine - January/February 2016 - 14
IEEE Power & Energy Magazine - January/February 2016 - 15
IEEE Power & Energy Magazine - January/February 2016 - 16
IEEE Power & Energy Magazine - January/February 2016 - 17
IEEE Power & Energy Magazine - January/February 2016 - 18
IEEE Power & Energy Magazine - January/February 2016 - 19
IEEE Power & Energy Magazine - January/February 2016 - 20
IEEE Power & Energy Magazine - January/February 2016 - 21
IEEE Power & Energy Magazine - January/February 2016 - 22
IEEE Power & Energy Magazine - January/February 2016 - 23
IEEE Power & Energy Magazine - January/February 2016 - 24
IEEE Power & Energy Magazine - January/February 2016 - 25
IEEE Power & Energy Magazine - January/February 2016 - 26
IEEE Power & Energy Magazine - January/February 2016 - 27
IEEE Power & Energy Magazine - January/February 2016 - 28
IEEE Power & Energy Magazine - January/February 2016 - 29
IEEE Power & Energy Magazine - January/February 2016 - 30
IEEE Power & Energy Magazine - January/February 2016 - 31
IEEE Power & Energy Magazine - January/February 2016 - 32
IEEE Power & Energy Magazine - January/February 2016 - 33
IEEE Power & Energy Magazine - January/February 2016 - 34
IEEE Power & Energy Magazine - January/February 2016 - 35
IEEE Power & Energy Magazine - January/February 2016 - 36
IEEE Power & Energy Magazine - January/February 2016 - 37
IEEE Power & Energy Magazine - January/February 2016 - 38
IEEE Power & Energy Magazine - January/February 2016 - 39
IEEE Power & Energy Magazine - January/February 2016 - 40
IEEE Power & Energy Magazine - January/February 2016 - 41
IEEE Power & Energy Magazine - January/February 2016 - 42
IEEE Power & Energy Magazine - January/February 2016 - 43
IEEE Power & Energy Magazine - January/February 2016 - 44
IEEE Power & Energy Magazine - January/February 2016 - 45
IEEE Power & Energy Magazine - January/February 2016 - 46
IEEE Power & Energy Magazine - January/February 2016 - 47
IEEE Power & Energy Magazine - January/February 2016 - 48
IEEE Power & Energy Magazine - January/February 2016 - 49
IEEE Power & Energy Magazine - January/February 2016 - 50
IEEE Power & Energy Magazine - January/February 2016 - 51
IEEE Power & Energy Magazine - January/February 2016 - 52
IEEE Power & Energy Magazine - January/February 2016 - 53
IEEE Power & Energy Magazine - January/February 2016 - 54
IEEE Power & Energy Magazine - January/February 2016 - 55
IEEE Power & Energy Magazine - January/February 2016 - 56
IEEE Power & Energy Magazine - January/February 2016 - 57
IEEE Power & Energy Magazine - January/February 2016 - 58
IEEE Power & Energy Magazine - January/February 2016 - 59
IEEE Power & Energy Magazine - January/February 2016 - 60
IEEE Power & Energy Magazine - January/February 2016 - 61
IEEE Power & Energy Magazine - January/February 2016 - 62
IEEE Power & Energy Magazine - January/February 2016 - 63
IEEE Power & Energy Magazine - January/February 2016 - 64
IEEE Power & Energy Magazine - January/February 2016 - 65
IEEE Power & Energy Magazine - January/February 2016 - 66
IEEE Power & Energy Magazine - January/February 2016 - 67
IEEE Power & Energy Magazine - January/February 2016 - 68
IEEE Power & Energy Magazine - January/February 2016 - 69
IEEE Power & Energy Magazine - January/February 2016 - 70
IEEE Power & Energy Magazine - January/February 2016 - 71
IEEE Power & Energy Magazine - January/February 2016 - 72
IEEE Power & Energy Magazine - January/February 2016 - 73
IEEE Power & Energy Magazine - January/February 2016 - 74
IEEE Power & Energy Magazine - January/February 2016 - 75
IEEE Power & Energy Magazine - January/February 2016 - 76
IEEE Power & Energy Magazine - January/February 2016 - 77
IEEE Power & Energy Magazine - January/February 2016 - 78
IEEE Power & Energy Magazine - January/February 2016 - 79
IEEE Power & Energy Magazine - January/February 2016 - 80
IEEE Power & Energy Magazine - January/February 2016 - 81
IEEE Power & Energy Magazine - January/February 2016 - 82
IEEE Power & Energy Magazine - January/February 2016 - 83
IEEE Power & Energy Magazine - January/February 2016 - 84
IEEE Power & Energy Magazine - January/February 2016 - 85
IEEE Power & Energy Magazine - January/February 2016 - 86
IEEE Power & Energy Magazine - January/February 2016 - 87
IEEE Power & Energy Magazine - January/February 2016 - 88
IEEE Power & Energy Magazine - January/February 2016 - 89
IEEE Power & Energy Magazine - January/February 2016 - 90
IEEE Power & Energy Magazine - January/February 2016 - 91
IEEE Power & Energy Magazine - January/February 2016 - 92
IEEE Power & Energy Magazine - January/February 2016 - 93
IEEE Power & Energy Magazine - January/February 2016 - 94
IEEE Power & Energy Magazine - January/February 2016 - 95
IEEE Power & Energy Magazine - January/February 2016 - 96
IEEE Power & Energy Magazine - January/February 2016 - 97
IEEE Power & Energy Magazine - January/February 2016 - 98
IEEE Power & Energy Magazine - January/February 2016 - 99
IEEE Power & Energy Magazine - January/February 2016 - 100
IEEE Power & Energy Magazine - January/February 2016 - 101
IEEE Power & Energy Magazine - January/February 2016 - 102
IEEE Power & Energy Magazine - January/February 2016 - 103
IEEE Power & Energy Magazine - January/February 2016 - 104
IEEE Power & Energy Magazine - January/February 2016 - 105
IEEE Power & Energy Magazine - January/February 2016 - 106
IEEE Power & Energy Magazine - January/February 2016 - 107
IEEE Power & Energy Magazine - January/February 2016 - 108
IEEE Power & Energy Magazine - January/February 2016 - 109
IEEE Power & Energy Magazine - January/February 2016 - 110
IEEE Power & Energy Magazine - January/February 2016 - 111
IEEE Power & Energy Magazine - January/February 2016 - 112
IEEE Power & Energy Magazine - January/February 2016 - 113
IEEE Power & Energy Magazine - January/February 2016 - 114
IEEE Power & Energy Magazine - January/February 2016 - 115
IEEE Power & Energy Magazine - January/February 2016 - 116
IEEE Power & Energy Magazine - January/February 2016 - 117
IEEE Power & Energy Magazine - January/February 2016 - 118
IEEE Power & Energy Magazine - January/February 2016 - 119
IEEE Power & Energy Magazine - January/February 2016 - 120
IEEE Power & Energy Magazine - January/February 2016 - 121
IEEE Power & Energy Magazine - January/February 2016 - 122
IEEE Power & Energy Magazine - January/February 2016 - 123
IEEE Power & Energy Magazine - January/February 2016 - 124
IEEE Power & Energy Magazine - January/February 2016 - 125
IEEE Power & Energy Magazine - January/February 2016 - 126
IEEE Power & Energy Magazine - January/February 2016 - 127
IEEE Power & Energy Magazine - January/February 2016 - 128
IEEE Power & Energy Magazine - January/February 2016 - Cover3
IEEE Power & Energy Magazine - January/February 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com