IEEE Power & Energy Magazine - January/February 2016 - 41
T
The iniTial design for digiTal meTers was To allow The uTiliTy To
more efficiently gather data in a timely and accurate manner. however, it was quickly realized that the ability to communicate directly between the meter and the utility could provide
command and control that was not previously available. in addition, it could provide sufficient data to gain visibility into energy consumption as well as assist in the maintenance
functions if the data is used in conjunction with the outage management, work management
and other utility operational systems. finally, if this new influx of data could be readily
accessed and mined, the studies and analytics could provide a wealth of information that
could be used by many different systems across the enterprise.
The Smart-Meter Information Landscape
Power Consumption
Traditional electric meters support a utility's billing functions by recording a customer's
cumulative power consumption. This data is then captured (typically once each month) by a
process involving human intervention. Customers never have first-hand information about
their own consumption at any finer granularity than the monthly billing cycle.
unlike traditional meters, smart meters digitally read and store not only cumulative
electricity consumption but also consumption during short intervals (typically 15 or even
5 min). smart meters can also record other parameters of the electrical load and supply
(such as instantaneous and maximum rate of energy demands, voltages, power factor, and
reactive power used) and may also contain environmental sensors (such as ambient temperature). smart meters contain communications capabilities and typically take the initiative
to transmit readings to the utility with latency on the order of minutes to hours.
utilities can make this information available to customers, providing them with the
opportunity to monitor and adjust their own energy usage. The combination of smart
meters with two-way communication technology for meter readings, meter control, and
consumer feedback is referred to as advanced metering infrastructure (ami).
The Common information model (Cim) defines information exchanges for all of the above-mentioned categories of
meter readings, as well as for real-time meter control and
asynchronous events. smart metering systems that leverage
the Cim as an information standard can enable the build out
of meter-data interoperability platforms that include thirdparty applications operating on customers' power-consumption data, giving customers powerful tools for analyzing and
optimizing their energy usage patterns.
Smart Meters Generate
Big Data for Utilities
and Customers
Other Electrical and Environmental Measurements and Events
one of the primary improvements gained by the use of the smart meter is the utility's ability to provide timely meter reading data to their customers, thereby giving them an opportunity to better manage their usage. however, other side effects of these meters include the
increased quality of the data produced as well as the ability to send and receive commands
and events between the utility and the meter.
with these meters, the utility can, for the first time, receive information about the meter
including, but not limited to,
✔ a meter reading based on a request from a system internal to the utility
✔ information about the health of the meter (such as a last gasp message)
✔ information that would indicate the meter had been tampered with or some other
event that would affect the quality of the data received
✔ dynamic information about any number of events that would impact the meter.
Digital Object Identifier 10.1109/MPE.2015.2485858
Date of publication: 30 December 2015
january/february 2016
ieee power & energy magazine
41
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - January/February 2016
IEEE Power & Energy Magazine - January/February 2016 - Cover1
IEEE Power & Energy Magazine - January/February 2016 - Cover2
IEEE Power & Energy Magazine - January/February 2016 - 1
IEEE Power & Energy Magazine - January/February 2016 - 2
IEEE Power & Energy Magazine - January/February 2016 - 3
IEEE Power & Energy Magazine - January/February 2016 - 4
IEEE Power & Energy Magazine - January/February 2016 - 5
IEEE Power & Energy Magazine - January/February 2016 - 6
IEEE Power & Energy Magazine - January/February 2016 - 7
IEEE Power & Energy Magazine - January/February 2016 - 8
IEEE Power & Energy Magazine - January/February 2016 - 9
IEEE Power & Energy Magazine - January/February 2016 - 10
IEEE Power & Energy Magazine - January/February 2016 - 11
IEEE Power & Energy Magazine - January/February 2016 - 12
IEEE Power & Energy Magazine - January/February 2016 - 13
IEEE Power & Energy Magazine - January/February 2016 - 14
IEEE Power & Energy Magazine - January/February 2016 - 15
IEEE Power & Energy Magazine - January/February 2016 - 16
IEEE Power & Energy Magazine - January/February 2016 - 17
IEEE Power & Energy Magazine - January/February 2016 - 18
IEEE Power & Energy Magazine - January/February 2016 - 19
IEEE Power & Energy Magazine - January/February 2016 - 20
IEEE Power & Energy Magazine - January/February 2016 - 21
IEEE Power & Energy Magazine - January/February 2016 - 22
IEEE Power & Energy Magazine - January/February 2016 - 23
IEEE Power & Energy Magazine - January/February 2016 - 24
IEEE Power & Energy Magazine - January/February 2016 - 25
IEEE Power & Energy Magazine - January/February 2016 - 26
IEEE Power & Energy Magazine - January/February 2016 - 27
IEEE Power & Energy Magazine - January/February 2016 - 28
IEEE Power & Energy Magazine - January/February 2016 - 29
IEEE Power & Energy Magazine - January/February 2016 - 30
IEEE Power & Energy Magazine - January/February 2016 - 31
IEEE Power & Energy Magazine - January/February 2016 - 32
IEEE Power & Energy Magazine - January/February 2016 - 33
IEEE Power & Energy Magazine - January/February 2016 - 34
IEEE Power & Energy Magazine - January/February 2016 - 35
IEEE Power & Energy Magazine - January/February 2016 - 36
IEEE Power & Energy Magazine - January/February 2016 - 37
IEEE Power & Energy Magazine - January/February 2016 - 38
IEEE Power & Energy Magazine - January/February 2016 - 39
IEEE Power & Energy Magazine - January/February 2016 - 40
IEEE Power & Energy Magazine - January/February 2016 - 41
IEEE Power & Energy Magazine - January/February 2016 - 42
IEEE Power & Energy Magazine - January/February 2016 - 43
IEEE Power & Energy Magazine - January/February 2016 - 44
IEEE Power & Energy Magazine - January/February 2016 - 45
IEEE Power & Energy Magazine - January/February 2016 - 46
IEEE Power & Energy Magazine - January/February 2016 - 47
IEEE Power & Energy Magazine - January/February 2016 - 48
IEEE Power & Energy Magazine - January/February 2016 - 49
IEEE Power & Energy Magazine - January/February 2016 - 50
IEEE Power & Energy Magazine - January/February 2016 - 51
IEEE Power & Energy Magazine - January/February 2016 - 52
IEEE Power & Energy Magazine - January/February 2016 - 53
IEEE Power & Energy Magazine - January/February 2016 - 54
IEEE Power & Energy Magazine - January/February 2016 - 55
IEEE Power & Energy Magazine - January/February 2016 - 56
IEEE Power & Energy Magazine - January/February 2016 - 57
IEEE Power & Energy Magazine - January/February 2016 - 58
IEEE Power & Energy Magazine - January/February 2016 - 59
IEEE Power & Energy Magazine - January/February 2016 - 60
IEEE Power & Energy Magazine - January/February 2016 - 61
IEEE Power & Energy Magazine - January/February 2016 - 62
IEEE Power & Energy Magazine - January/February 2016 - 63
IEEE Power & Energy Magazine - January/February 2016 - 64
IEEE Power & Energy Magazine - January/February 2016 - 65
IEEE Power & Energy Magazine - January/February 2016 - 66
IEEE Power & Energy Magazine - January/February 2016 - 67
IEEE Power & Energy Magazine - January/February 2016 - 68
IEEE Power & Energy Magazine - January/February 2016 - 69
IEEE Power & Energy Magazine - January/February 2016 - 70
IEEE Power & Energy Magazine - January/February 2016 - 71
IEEE Power & Energy Magazine - January/February 2016 - 72
IEEE Power & Energy Magazine - January/February 2016 - 73
IEEE Power & Energy Magazine - January/February 2016 - 74
IEEE Power & Energy Magazine - January/February 2016 - 75
IEEE Power & Energy Magazine - January/February 2016 - 76
IEEE Power & Energy Magazine - January/February 2016 - 77
IEEE Power & Energy Magazine - January/February 2016 - 78
IEEE Power & Energy Magazine - January/February 2016 - 79
IEEE Power & Energy Magazine - January/February 2016 - 80
IEEE Power & Energy Magazine - January/February 2016 - 81
IEEE Power & Energy Magazine - January/February 2016 - 82
IEEE Power & Energy Magazine - January/February 2016 - 83
IEEE Power & Energy Magazine - January/February 2016 - 84
IEEE Power & Energy Magazine - January/February 2016 - 85
IEEE Power & Energy Magazine - January/February 2016 - 86
IEEE Power & Energy Magazine - January/February 2016 - 87
IEEE Power & Energy Magazine - January/February 2016 - 88
IEEE Power & Energy Magazine - January/February 2016 - 89
IEEE Power & Energy Magazine - January/February 2016 - 90
IEEE Power & Energy Magazine - January/February 2016 - 91
IEEE Power & Energy Magazine - January/February 2016 - 92
IEEE Power & Energy Magazine - January/February 2016 - 93
IEEE Power & Energy Magazine - January/February 2016 - 94
IEEE Power & Energy Magazine - January/February 2016 - 95
IEEE Power & Energy Magazine - January/February 2016 - 96
IEEE Power & Energy Magazine - January/February 2016 - 97
IEEE Power & Energy Magazine - January/February 2016 - 98
IEEE Power & Energy Magazine - January/February 2016 - 99
IEEE Power & Energy Magazine - January/February 2016 - 100
IEEE Power & Energy Magazine - January/February 2016 - 101
IEEE Power & Energy Magazine - January/February 2016 - 102
IEEE Power & Energy Magazine - January/February 2016 - 103
IEEE Power & Energy Magazine - January/February 2016 - 104
IEEE Power & Energy Magazine - January/February 2016 - 105
IEEE Power & Energy Magazine - January/February 2016 - 106
IEEE Power & Energy Magazine - January/February 2016 - 107
IEEE Power & Energy Magazine - January/February 2016 - 108
IEEE Power & Energy Magazine - January/February 2016 - 109
IEEE Power & Energy Magazine - January/February 2016 - 110
IEEE Power & Energy Magazine - January/February 2016 - 111
IEEE Power & Energy Magazine - January/February 2016 - 112
IEEE Power & Energy Magazine - January/February 2016 - 113
IEEE Power & Energy Magazine - January/February 2016 - 114
IEEE Power & Energy Magazine - January/February 2016 - 115
IEEE Power & Energy Magazine - January/February 2016 - 116
IEEE Power & Energy Magazine - January/February 2016 - 117
IEEE Power & Energy Magazine - January/February 2016 - 118
IEEE Power & Energy Magazine - January/February 2016 - 119
IEEE Power & Energy Magazine - January/February 2016 - 120
IEEE Power & Energy Magazine - January/February 2016 - 121
IEEE Power & Energy Magazine - January/February 2016 - 122
IEEE Power & Energy Magazine - January/February 2016 - 123
IEEE Power & Energy Magazine - January/February 2016 - 124
IEEE Power & Energy Magazine - January/February 2016 - 125
IEEE Power & Energy Magazine - January/February 2016 - 126
IEEE Power & Energy Magazine - January/February 2016 - 127
IEEE Power & Energy Magazine - January/February 2016 - 128
IEEE Power & Energy Magazine - January/February 2016 - Cover3
IEEE Power & Energy Magazine - January/February 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com