IEEE Power & Energy Magazine - March/April 2016 - 39
table 2. A Celilo upgrade comparison.
1989 Celilo
Expansion
2016 Celilo
Upgrade
Thyristors per valve
120
90
Maximum voltage as rectifier
500 kV
560 kV
Maximum current
1,100 A
3,410 A
Maximum power as rectifier
1,100 MW
3,800 MW
✔ Alberta east link: This new HVdc transmission system
in Alberta, Canada, was commissioned in 2014 and supplied by Siemens. The rating is 1,000 MW, ±500 kV
and extends for 485 km. Increased power demand in
central and southern Alberta overstressed the 240-kV ac
system, and new capacity was needed to move power
from the Edmonton to the Calgary area. Two HVdc
lines were constructed. The east link line runs from
north and east of Edmonton to southeast of Calgary.
✔ Alberta west link: Similar to the Alberta east line,
this system has the same rating and was also commissioned in 2014. The length of the line is 400 km. It
runs from southwest of Edmonton to Calgary, passing
substantially west of the east link line.
Back-to-Back Converters
figure 7. Scale produced by hard water in an evaporative
cooling system. (Used with permission from EPRI.)
Older Unrenovated HVdc system
Vancouver Island HVdc Cable
Compared with most HVdc transmission systems, the Vancouver Island HVdc cable is quite remarkable; it was built
in two stages by two very different manufacturers with very
different technologies. But the most remarkable aspect is
that it is still in service and there are no plans to replace or
renovate it.
The first pole was built in 1970 using mercury arc technology from ASEA. The line consists of a converter station
south of the city of Vancouver, short overhead lines, a submarine cable between the mainland and Vancouver Island
and a converter station on Vancouver Island north of the city
of Victoria. Vancouver Island has no significant generation
resources of its own and depends on power from the mainland. A second set of converters was added in 1977 using GE
air-cooled thyristors. No upgrades or renovations have been
undertaken since then or are planned, and the system is still
in service. This is the last of the many mercury arc converters to remain in use worldwide. Several years ago, ac cables
were installed to supplement the HVdc cable.
New HVdc Systems in the WECC
Two new HVdc transmission systems have been installed in the
WECC in the province of Alberta, Canada. Reporting on renovation of these systems will have to wait 20-30 years for a future
publication or discussion at IEEE Working Group 15.05.08.
38
ieee power & energy magazine
The WECC area is not synchronous with the rest of the
United States or Canada. To transfer power between these
nonsynchronous areas, one must use back-to-back converters or a device called a variable frequency transformer.
Back-to-back converters are like an HVdc transmission
system without the transmission line. Both converters are
located in the same facility and change ac power to dc
and back to ac. The controlled power transfer is dc power
between the converters.
The variable frequency transformer is a large ac machine
in which the rotor winding is connected to one power system
and the stator winding is connected to a different nonsynchronous power system. Power transfer is effected by applying torque to the shaft of the rotor. Several such devices have
been installed, but none are in the WECC area. Back-to-back
converters are typically based on thyristor valves, although
one using voltage source converters exists between Texas
and Mexico.
In the WECC, there are nine back-to-back converters that
connect with the large eastern interconnection or with Texas.
One installation is in Canada (McNeil), and the rest are in
the United States. The newest is Lamar in Colorado, built
in 2005, and the oldest is David Hamil built in 1977, and
located in Stegall Nebraska.
Blackwater
Built in 1984 by BBC, this thyristor converter is rated at
200 MW, connects between New Mexico and Texas, and
is located near Clovis, New Mexico. The station is connected at 345 kV on the New Mexico side and 230 kV on
the Texas side. The dc voltage is 57 kV. It was renovated in
2009 by ABB when the control and cooling systems were
replaced. The original evaporative cooling system had become a considerable problem due to decreased availability of water and scaling (see Figure 7). New dry coolers
were installed along with new controls. The original BBC
controls were still operable, and the utility had a sizable
stock of spare control equipment. The control systems,
however, were replaced in 2009 because of difficulties
march/april 2016
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2016
IEEE Power & Energy Magazine - March/April 2016 - Cover1
IEEE Power & Energy Magazine - March/April 2016 - Cover2
IEEE Power & Energy Magazine - March/April 2016 - 1
IEEE Power & Energy Magazine - March/April 2016 - 2
IEEE Power & Energy Magazine - March/April 2016 - 3
IEEE Power & Energy Magazine - March/April 2016 - 4
IEEE Power & Energy Magazine - March/April 2016 - 5
IEEE Power & Energy Magazine - March/April 2016 - 6
IEEE Power & Energy Magazine - March/April 2016 - 7
IEEE Power & Energy Magazine - March/April 2016 - 8
IEEE Power & Energy Magazine - March/April 2016 - 9
IEEE Power & Energy Magazine - March/April 2016 - 10
IEEE Power & Energy Magazine - March/April 2016 - 11
IEEE Power & Energy Magazine - March/April 2016 - 12
IEEE Power & Energy Magazine - March/April 2016 - 13
IEEE Power & Energy Magazine - March/April 2016 - 14
IEEE Power & Energy Magazine - March/April 2016 - 15
IEEE Power & Energy Magazine - March/April 2016 - 16
IEEE Power & Energy Magazine - March/April 2016 - 17
IEEE Power & Energy Magazine - March/April 2016 - 18
IEEE Power & Energy Magazine - March/April 2016 - 19
IEEE Power & Energy Magazine - March/April 2016 - 20
IEEE Power & Energy Magazine - March/April 2016 - 21
IEEE Power & Energy Magazine - March/April 2016 - 22
IEEE Power & Energy Magazine - March/April 2016 - 23
IEEE Power & Energy Magazine - March/April 2016 - 24
IEEE Power & Energy Magazine - March/April 2016 - 25
IEEE Power & Energy Magazine - March/April 2016 - 26
IEEE Power & Energy Magazine - March/April 2016 - 27
IEEE Power & Energy Magazine - March/April 2016 - 28
IEEE Power & Energy Magazine - March/April 2016 - 29
IEEE Power & Energy Magazine - March/April 2016 - 30
IEEE Power & Energy Magazine - March/April 2016 - 31
IEEE Power & Energy Magazine - March/April 2016 - 32
IEEE Power & Energy Magazine - March/April 2016 - 33
IEEE Power & Energy Magazine - March/April 2016 - 34
IEEE Power & Energy Magazine - March/April 2016 - 35
IEEE Power & Energy Magazine - March/April 2016 - 36
IEEE Power & Energy Magazine - March/April 2016 - 37
IEEE Power & Energy Magazine - March/April 2016 - 38
IEEE Power & Energy Magazine - March/April 2016 - 39
IEEE Power & Energy Magazine - March/April 2016 - 40
IEEE Power & Energy Magazine - March/April 2016 - 41
IEEE Power & Energy Magazine - March/April 2016 - 42
IEEE Power & Energy Magazine - March/April 2016 - 43
IEEE Power & Energy Magazine - March/April 2016 - 44
IEEE Power & Energy Magazine - March/April 2016 - 45
IEEE Power & Energy Magazine - March/April 2016 - 46
IEEE Power & Energy Magazine - March/April 2016 - 47
IEEE Power & Energy Magazine - March/April 2016 - 48
IEEE Power & Energy Magazine - March/April 2016 - 49
IEEE Power & Energy Magazine - March/April 2016 - 50
IEEE Power & Energy Magazine - March/April 2016 - 51
IEEE Power & Energy Magazine - March/April 2016 - 52
IEEE Power & Energy Magazine - March/April 2016 - 53
IEEE Power & Energy Magazine - March/April 2016 - 54
IEEE Power & Energy Magazine - March/April 2016 - 55
IEEE Power & Energy Magazine - March/April 2016 - 56
IEEE Power & Energy Magazine - March/April 2016 - 57
IEEE Power & Energy Magazine - March/April 2016 - 58
IEEE Power & Energy Magazine - March/April 2016 - 59
IEEE Power & Energy Magazine - March/April 2016 - 60
IEEE Power & Energy Magazine - March/April 2016 - 61
IEEE Power & Energy Magazine - March/April 2016 - 62
IEEE Power & Energy Magazine - March/April 2016 - 63
IEEE Power & Energy Magazine - March/April 2016 - 64
IEEE Power & Energy Magazine - March/April 2016 - 65
IEEE Power & Energy Magazine - March/April 2016 - 66
IEEE Power & Energy Magazine - March/April 2016 - 67
IEEE Power & Energy Magazine - March/April 2016 - 68
IEEE Power & Energy Magazine - March/April 2016 - 69
IEEE Power & Energy Magazine - March/April 2016 - 70
IEEE Power & Energy Magazine - March/April 2016 - 71
IEEE Power & Energy Magazine - March/April 2016 - 72
IEEE Power & Energy Magazine - March/April 2016 - 73
IEEE Power & Energy Magazine - March/April 2016 - 74
IEEE Power & Energy Magazine - March/April 2016 - 75
IEEE Power & Energy Magazine - March/April 2016 - 76
IEEE Power & Energy Magazine - March/April 2016 - 77
IEEE Power & Energy Magazine - March/April 2016 - 78
IEEE Power & Energy Magazine - March/April 2016 - 79
IEEE Power & Energy Magazine - March/April 2016 - 80
IEEE Power & Energy Magazine - March/April 2016 - 81
IEEE Power & Energy Magazine - March/April 2016 - 82
IEEE Power & Energy Magazine - March/April 2016 - 83
IEEE Power & Energy Magazine - March/April 2016 - 84
IEEE Power & Energy Magazine - March/April 2016 - 85
IEEE Power & Energy Magazine - March/April 2016 - 86
IEEE Power & Energy Magazine - March/April 2016 - 87
IEEE Power & Energy Magazine - March/April 2016 - 88
IEEE Power & Energy Magazine - March/April 2016 - 89
IEEE Power & Energy Magazine - March/April 2016 - 90
IEEE Power & Energy Magazine - March/April 2016 - 91
IEEE Power & Energy Magazine - March/April 2016 - 92
IEEE Power & Energy Magazine - March/April 2016 - 93
IEEE Power & Energy Magazine - March/April 2016 - 94
IEEE Power & Energy Magazine - March/April 2016 - 95
IEEE Power & Energy Magazine - March/April 2016 - 96
IEEE Power & Energy Magazine - March/April 2016 - 97
IEEE Power & Energy Magazine - March/April 2016 - 98
IEEE Power & Energy Magazine - March/April 2016 - 99
IEEE Power & Energy Magazine - March/April 2016 - 100
IEEE Power & Energy Magazine - March/April 2016 - 101
IEEE Power & Energy Magazine - March/April 2016 - 102
IEEE Power & Energy Magazine - March/April 2016 - 103
IEEE Power & Energy Magazine - March/April 2016 - 104
IEEE Power & Energy Magazine - March/April 2016 - 105
IEEE Power & Energy Magazine - March/April 2016 - 106
IEEE Power & Energy Magazine - March/April 2016 - 107
IEEE Power & Energy Magazine - March/April 2016 - 108
IEEE Power & Energy Magazine - March/April 2016 - 109
IEEE Power & Energy Magazine - March/April 2016 - 110
IEEE Power & Energy Magazine - March/April 2016 - 111
IEEE Power & Energy Magazine - March/April 2016 - 112
IEEE Power & Energy Magazine - March/April 2016 - 113
IEEE Power & Energy Magazine - March/April 2016 - 114
IEEE Power & Energy Magazine - March/April 2016 - Cover3
IEEE Power & Energy Magazine - March/April 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com