IEEE Power & Energy Magazine - March/April 2018 - 82

as shown in Figure 6. Upon the successful completion of the
training, there is no need to apply power flow analysis to
every system state to select the contingency. in other words,
dnn can provide a justification of the system status based
on the input data. the proposed whole process is illustrated
in Figure 7.

System Fault Diagnosis
although both focus on maintaining secure operation,
system fault diagnosis differs from security assessment
in that the former deals with an outage that has already
occurred while the latter makes predictions of the future
contingency. during real-time power system operation,
the voltage/current values change with load fluctuations,
which implies different operating conditions of lines and
buses. therefore voltage/current values can be used as an
intuitional signal of a fault. to train a dnn for fault diagnosis, historical data can be applied as the input, and the
output includes the fault type and the associated possibil-

PG
QG
PD
QD
V
θ
Input: Measurement/
Simulation Data

DNN Training

figure 6. Training the DNN.

ity. in this case, the dnn works as a classification tool to
pin the fault location. With the assistance of a well-trained
dnn, a system fault can be quickly spotted based on the
observation of a current or voltage abnormality, even in the
face of a large-scale transmission system with hundreds or
thousands of branches. this intelligent fault diagnosis process is depicted in Figure 8.

Cascading Outage Prediction
the cascading outage prediction differs from security assessment in that it is a multiperiod risk-assessment procedure,
in which an initial disturbance would trigger a sequence of
dependent component outages in future time intervals. this
in turn adds an even heavier computational burden to the system operator. to crack this computational intractability, if we
assume that the procedure of cascading outages is markovian,
then all the possible outages can be formed as a tree structure
and traversed using an mctS, as shown in Figure 9.
in the markovian tree structure, each node stands for a
system state, and each branch represents an outage. Similar to the
previous two studies, historical
data and simulation runs can be
Secure
used to perform the dnn training
State
for the policy network. then, for
Alarm
any system state, a risk index can
State
be assigned to evaluate its severity, which is calculated as the sum
Insecure
State
of the immediate cost after the
initial outage and the expectation
Output: System
of the risk indices of the subtree
Status
outages. this can be used for evaluation in the value network.

Supervised Learning
(Based on Historical Data)
Establish the Policy Network:
Identify the Potential
Contingencies via Measured
Data Under Different Scenarios

Reinforcement
Learning
(Based on Simulation)

Scenario Tree
Generation:
Construct the Scenario
Tree to Represent the
System Operation States

Establish the
Value Network:
Get the Security
Index of Each
System State Via
Power Flow
Calculation
Input: System
State Variables

Model Test:
Input Real-Time Data into
DNN to Conduct Online Security
Assessment and to Further
Implement Corrective Control
and Stabilization Measures

Secure
Alarm
Insecure
Ranking

Output:
Severity
Evaluation

Deep Neural Network Training:
Use the Sampled System States to Decide
the Number of Hidden Layers, the Neurons in
Each Layer, and the Weights for Each Neuron
Connection for an Accurate System
State Classification

figure 7. A DNN-based online security assessment.
82

ieee power & energy magazine

march/april 2018



Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2018

Contents
IEEE Power & Energy Magazine - March/April 2018 - Cover1
IEEE Power & Energy Magazine - March/April 2018 - Cover2
IEEE Power & Energy Magazine - March/April 2018 - Contents
IEEE Power & Energy Magazine - March/April 2018 - 2
IEEE Power & Energy Magazine - March/April 2018 - 3
IEEE Power & Energy Magazine - March/April 2018 - 4
IEEE Power & Energy Magazine - March/April 2018 - 5
IEEE Power & Energy Magazine - March/April 2018 - 6
IEEE Power & Energy Magazine - March/April 2018 - 7
IEEE Power & Energy Magazine - March/April 2018 - 8
IEEE Power & Energy Magazine - March/April 2018 - 9
IEEE Power & Energy Magazine - March/April 2018 - 10
IEEE Power & Energy Magazine - March/April 2018 - 11
IEEE Power & Energy Magazine - March/April 2018 - 12
IEEE Power & Energy Magazine - March/April 2018 - 13
IEEE Power & Energy Magazine - March/April 2018 - 14
IEEE Power & Energy Magazine - March/April 2018 - 15
IEEE Power & Energy Magazine - March/April 2018 - 16
IEEE Power & Energy Magazine - March/April 2018 - 17
IEEE Power & Energy Magazine - March/April 2018 - 18
IEEE Power & Energy Magazine - March/April 2018 - 19
IEEE Power & Energy Magazine - March/April 2018 - 20
IEEE Power & Energy Magazine - March/April 2018 - 21
IEEE Power & Energy Magazine - March/April 2018 - 22
IEEE Power & Energy Magazine - March/April 2018 - 23
IEEE Power & Energy Magazine - March/April 2018 - 24
IEEE Power & Energy Magazine - March/April 2018 - 25
IEEE Power & Energy Magazine - March/April 2018 - 26
IEEE Power & Energy Magazine - March/April 2018 - 27
IEEE Power & Energy Magazine - March/April 2018 - 28
IEEE Power & Energy Magazine - March/April 2018 - 29
IEEE Power & Energy Magazine - March/April 2018 - 30
IEEE Power & Energy Magazine - March/April 2018 - 31
IEEE Power & Energy Magazine - March/April 2018 - 32
IEEE Power & Energy Magazine - March/April 2018 - 33
IEEE Power & Energy Magazine - March/April 2018 - 34
IEEE Power & Energy Magazine - March/April 2018 - 35
IEEE Power & Energy Magazine - March/April 2018 - 36
IEEE Power & Energy Magazine - March/April 2018 - 37
IEEE Power & Energy Magazine - March/April 2018 - 38
IEEE Power & Energy Magazine - March/April 2018 - 39
IEEE Power & Energy Magazine - March/April 2018 - 40
IEEE Power & Energy Magazine - March/April 2018 - 41
IEEE Power & Energy Magazine - March/April 2018 - 42
IEEE Power & Energy Magazine - March/April 2018 - 43
IEEE Power & Energy Magazine - March/April 2018 - 44
IEEE Power & Energy Magazine - March/April 2018 - 45
IEEE Power & Energy Magazine - March/April 2018 - 46
IEEE Power & Energy Magazine - March/April 2018 - 47
IEEE Power & Energy Magazine - March/April 2018 - 48
IEEE Power & Energy Magazine - March/April 2018 - 49
IEEE Power & Energy Magazine - March/April 2018 - 50
IEEE Power & Energy Magazine - March/April 2018 - 51
IEEE Power & Energy Magazine - March/April 2018 - 52
IEEE Power & Energy Magazine - March/April 2018 - 53
IEEE Power & Energy Magazine - March/April 2018 - 54
IEEE Power & Energy Magazine - March/April 2018 - 55
IEEE Power & Energy Magazine - March/April 2018 - 56
IEEE Power & Energy Magazine - March/April 2018 - 57
IEEE Power & Energy Magazine - March/April 2018 - 58
IEEE Power & Energy Magazine - March/April 2018 - 59
IEEE Power & Energy Magazine - March/April 2018 - 60
IEEE Power & Energy Magazine - March/April 2018 - 61
IEEE Power & Energy Magazine - March/April 2018 - 62
IEEE Power & Energy Magazine - March/April 2018 - 63
IEEE Power & Energy Magazine - March/April 2018 - 64
IEEE Power & Energy Magazine - March/April 2018 - 65
IEEE Power & Energy Magazine - March/April 2018 - 66
IEEE Power & Energy Magazine - March/April 2018 - 67
IEEE Power & Energy Magazine - March/April 2018 - 68
IEEE Power & Energy Magazine - March/April 2018 - 69
IEEE Power & Energy Magazine - March/April 2018 - 70
IEEE Power & Energy Magazine - March/April 2018 - 71
IEEE Power & Energy Magazine - March/April 2018 - 72
IEEE Power & Energy Magazine - March/April 2018 - 73
IEEE Power & Energy Magazine - March/April 2018 - 74
IEEE Power & Energy Magazine - March/April 2018 - 75
IEEE Power & Energy Magazine - March/April 2018 - 76
IEEE Power & Energy Magazine - March/April 2018 - 77
IEEE Power & Energy Magazine - March/April 2018 - 78
IEEE Power & Energy Magazine - March/April 2018 - 79
IEEE Power & Energy Magazine - March/April 2018 - 80
IEEE Power & Energy Magazine - March/April 2018 - 81
IEEE Power & Energy Magazine - March/April 2018 - 82
IEEE Power & Energy Magazine - March/April 2018 - 83
IEEE Power & Energy Magazine - March/April 2018 - 84
IEEE Power & Energy Magazine - March/April 2018 - 85
IEEE Power & Energy Magazine - March/April 2018 - 86
IEEE Power & Energy Magazine - March/April 2018 - 87
IEEE Power & Energy Magazine - March/April 2018 - 88
IEEE Power & Energy Magazine - March/April 2018 - 89
IEEE Power & Energy Magazine - March/April 2018 - 90
IEEE Power & Energy Magazine - March/April 2018 - 91
IEEE Power & Energy Magazine - March/April 2018 - 92
IEEE Power & Energy Magazine - March/April 2018 - 93
IEEE Power & Energy Magazine - March/April 2018 - 94
IEEE Power & Energy Magazine - March/April 2018 - 95
IEEE Power & Energy Magazine - March/April 2018 - 96
IEEE Power & Energy Magazine - March/April 2018 - 97
IEEE Power & Energy Magazine - March/April 2018 - 98
IEEE Power & Energy Magazine - March/April 2018 - 99
IEEE Power & Energy Magazine - March/April 2018 - 100
IEEE Power & Energy Magazine - March/April 2018 - 101
IEEE Power & Energy Magazine - March/April 2018 - 102
IEEE Power & Energy Magazine - March/April 2018 - 103
IEEE Power & Energy Magazine - March/April 2018 - 104
IEEE Power & Energy Magazine - March/April 2018 - 105
IEEE Power & Energy Magazine - March/April 2018 - 106
IEEE Power & Energy Magazine - March/April 2018 - 107
IEEE Power & Energy Magazine - March/April 2018 - 108
IEEE Power & Energy Magazine - March/April 2018 - Cover3
IEEE Power & Energy Magazine - March/April 2018 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com