IEEE Power & Energy Magazine - March/April 2021 - 43
Effect of Renewables on Transient Stability
As defined in the " Operational Security Definitions and
Criteria " section, transient stability has two components:
synchronous plant rotor angle stability (as a set of synchronous machines connected to the system) and nonsynchronous
plant fault ride-through performance (as a set of converterbased energy sources connected to the system). To qualitatively demonstrate how rotor angle stability is affected by a
significant penetration of renewables, we will use the power
angle characteristic of a synchronous machine, as illustrated
in Figure 4.
The electromagnetic power of the machine changes sinusoidally with the rotor angle. In a steady state, the electromagnetic power of the machine is balanced by the mechanical power of the turbine (operating point A in Figure 4).
During a disturbance (power unbalance), the rotor angle
changes as the rotor speed deviates from the synchronous
speed. As a measure of rotor angle stability, we can use the
concept of " synchronizing torque. " It shows how much the
rotor angle changes for the same variation in the power from
the steady-state operating point of the machine. A higher
synchronizing torque gives more stability to the synchronous plant because it encourages synchronous machines to
spin together at the same frequency. As the machine gets
more loaded (the operating point moves from A to B), the
synchronizing torque diminishes. This decrease contributes
march/april 2021
to a reduction in the transient stability of the machine to
a disturbance that perturbs the rotor angle. That is, as the
machine moves to the new operating point, the forces trying
to resynchronize it to that operating point will be weaker.
Similarly, if the maximum electromagnetic power of the
machine decreases (see the orange curve in Figure 4), it has
the effect of decreasing the synchronizing power and results
in a reduction in the transient stability of the machine.
Now, consider what initially happens when only a small
portion of the synchronous generation is replaced by converter-based renewables. If the remaining synchronous
generators are less loaded than normal, their synchronizing
torque increases. This improves the transient stability of the
system. However, a further increase of renewables requires
a progressive decommitting of the conventional units. The
equivalent power angle characteristic will mirror the orange
curve in Figure 4, with operating at point C. The maximum
electromagnetic power of the synchronous machine will be
reduced because it will be more difficult to " push " power
from the remaining synchronous machines to the loads, due
to the increased reactance of the now longer paths and the
poorer voltage support from the now prevailing nonsynchronous generation. As discussed previously, having less
electromagnetic power will cause a reduction of the synchronizing torque, and at very high renewable penetration
levels, the transient stability deteriorates rapidly because
the remaining synchronous units are forced to be highly
loaded. Note, however, that recent advances in converterbased grid connection applications based on insulated gate
bipolar transistor technology will enable engineers to counteract these phenomena.
The " All Island TSO Facilitation of Renewables Study "
(see Eirgrid 2010 in the " For Further Reading " section)
estimated the reduction of the critical clearing time (the
maximum time allowed for protection to clear a three-phase
fault at the terminals of a synchronous generator before the
Increased Loading
B Maximum Electromagnetic Power
Power
have high levels of renewables. One example is the European
Union Flexturbine project (2016-2018).
Existing transmission and distribution networks were
designed using planning criteria based on a limited number
of power flow patterns. These patterns were derived from the
fundamental paradigm of unidirectional power flow from large
generators through the transmission system to the distribution
system. The latter has been considered " passive " and was
designed to convey electricity from bulk transmission system
supply points to loads. With the advent of renewable and other
distributed generation, this is no longer the case. Transmission and distribution systems now experience multidirectional
power flows, depending on the amount of instant renewable
generation in different parts of the system. The power flow
magnitude can vary, and so can its direction. When wind generation is low, power flows from the transmission system to the
distribution system, while during periods of high wind generation, energy may flow in the opposite direction, from the
distribution system to the transmission system.
It is well known that conventional power stations have been
built close to load centers. In contrast, renewable generation is
typically located far from load centers. Therefore, for example,
if there is a lot of wind generation, power flows can reverse and
reach significant values that were not originally anticipated for
the transmission circuits. Such circuits can be highly loaded,
and they can overload if there are outages in parallel circuits.
Therefore, thermal security must be monitored in real time to
avoid cascading outages due to overload conditions.
A
C
Normal Loading
Rotor Angle
figure 4. A power angle characteristic with normal and
increased loading (operating points A and B) and a reduced
power angle characteristic (operating point C).
ieee power & energy magazine
43
IEEE Power & Energy Magazine - March/April 2021
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - March/April 2021
Contents
IEEE Power & Energy Magazine - March/April 2021 - Cover1
IEEE Power & Energy Magazine - March/April 2021 - Cover2
IEEE Power & Energy Magazine - March/April 2021 - Contents
IEEE Power & Energy Magazine - March/April 2021 - 2
IEEE Power & Energy Magazine - March/April 2021 - 3
IEEE Power & Energy Magazine - March/April 2021 - 4
IEEE Power & Energy Magazine - March/April 2021 - 5
IEEE Power & Energy Magazine - March/April 2021 - 6
IEEE Power & Energy Magazine - March/April 2021 - 7
IEEE Power & Energy Magazine - March/April 2021 - 8
IEEE Power & Energy Magazine - March/April 2021 - 9
IEEE Power & Energy Magazine - March/April 2021 - 10
IEEE Power & Energy Magazine - March/April 2021 - 11
IEEE Power & Energy Magazine - March/April 2021 - 12
IEEE Power & Energy Magazine - March/April 2021 - 13
IEEE Power & Energy Magazine - March/April 2021 - 14
IEEE Power & Energy Magazine - March/April 2021 - 15
IEEE Power & Energy Magazine - March/April 2021 - 16
IEEE Power & Energy Magazine - March/April 2021 - 17
IEEE Power & Energy Magazine - March/April 2021 - 18
IEEE Power & Energy Magazine - March/April 2021 - 19
IEEE Power & Energy Magazine - March/April 2021 - 20
IEEE Power & Energy Magazine - March/April 2021 - 21
IEEE Power & Energy Magazine - March/April 2021 - 22
IEEE Power & Energy Magazine - March/April 2021 - 23
IEEE Power & Energy Magazine - March/April 2021 - 24
IEEE Power & Energy Magazine - March/April 2021 - 25
IEEE Power & Energy Magazine - March/April 2021 - 26
IEEE Power & Energy Magazine - March/April 2021 - 27
IEEE Power & Energy Magazine - March/April 2021 - 28
IEEE Power & Energy Magazine - March/April 2021 - 29
IEEE Power & Energy Magazine - March/April 2021 - 30
IEEE Power & Energy Magazine - March/April 2021 - 31
IEEE Power & Energy Magazine - March/April 2021 - 32
IEEE Power & Energy Magazine - March/April 2021 - 33
IEEE Power & Energy Magazine - March/April 2021 - 34
IEEE Power & Energy Magazine - March/April 2021 - 35
IEEE Power & Energy Magazine - March/April 2021 - 36
IEEE Power & Energy Magazine - March/April 2021 - 37
IEEE Power & Energy Magazine - March/April 2021 - 38
IEEE Power & Energy Magazine - March/April 2021 - 39
IEEE Power & Energy Magazine - March/April 2021 - 40
IEEE Power & Energy Magazine - March/April 2021 - 41
IEEE Power & Energy Magazine - March/April 2021 - 42
IEEE Power & Energy Magazine - March/April 2021 - 43
IEEE Power & Energy Magazine - March/April 2021 - 44
IEEE Power & Energy Magazine - March/April 2021 - 45
IEEE Power & Energy Magazine - March/April 2021 - 46
IEEE Power & Energy Magazine - March/April 2021 - 47
IEEE Power & Energy Magazine - March/April 2021 - 48
IEEE Power & Energy Magazine - March/April 2021 - 49
IEEE Power & Energy Magazine - March/April 2021 - 50
IEEE Power & Energy Magazine - March/April 2021 - 51
IEEE Power & Energy Magazine - March/April 2021 - 52
IEEE Power & Energy Magazine - March/April 2021 - 53
IEEE Power & Energy Magazine - March/April 2021 - 54
IEEE Power & Energy Magazine - March/April 2021 - 55
IEEE Power & Energy Magazine - March/April 2021 - 56
IEEE Power & Energy Magazine - March/April 2021 - 57
IEEE Power & Energy Magazine - March/April 2021 - 58
IEEE Power & Energy Magazine - March/April 2021 - 59
IEEE Power & Energy Magazine - March/April 2021 - 60
IEEE Power & Energy Magazine - March/April 2021 - 61
IEEE Power & Energy Magazine - March/April 2021 - 62
IEEE Power & Energy Magazine - March/April 2021 - 63
IEEE Power & Energy Magazine - March/April 2021 - 64
IEEE Power & Energy Magazine - March/April 2021 - 65
IEEE Power & Energy Magazine - March/April 2021 - 66
IEEE Power & Energy Magazine - March/April 2021 - 67
IEEE Power & Energy Magazine - March/April 2021 - 68
IEEE Power & Energy Magazine - March/April 2021 - 69
IEEE Power & Energy Magazine - March/April 2021 - 70
IEEE Power & Energy Magazine - March/April 2021 - 71
IEEE Power & Energy Magazine - March/April 2021 - 72
IEEE Power & Energy Magazine - March/April 2021 - 73
IEEE Power & Energy Magazine - March/April 2021 - 74
IEEE Power & Energy Magazine - March/April 2021 - 75
IEEE Power & Energy Magazine - March/April 2021 - 76
IEEE Power & Energy Magazine - March/April 2021 - 77
IEEE Power & Energy Magazine - March/April 2021 - 78
IEEE Power & Energy Magazine - March/April 2021 - 79
IEEE Power & Energy Magazine - March/April 2021 - 80
IEEE Power & Energy Magazine - March/April 2021 - 81
IEEE Power & Energy Magazine - March/April 2021 - 82
IEEE Power & Energy Magazine - March/April 2021 - 83
IEEE Power & Energy Magazine - March/April 2021 - 84
IEEE Power & Energy Magazine - March/April 2021 - 85
IEEE Power & Energy Magazine - March/April 2021 - 86
IEEE Power & Energy Magazine - March/April 2021 - 87
IEEE Power & Energy Magazine - March/April 2021 - 88
IEEE Power & Energy Magazine - March/April 2021 - 89
IEEE Power & Energy Magazine - March/April 2021 - 90
IEEE Power & Energy Magazine - March/April 2021 - 91
IEEE Power & Energy Magazine - March/April 2021 - 92
IEEE Power & Energy Magazine - March/April 2021 - 93
IEEE Power & Energy Magazine - March/April 2021 - 94
IEEE Power & Energy Magazine - March/April 2021 - 95
IEEE Power & Energy Magazine - March/April 2021 - 96
IEEE Power & Energy Magazine - March/April 2021 - 97
IEEE Power & Energy Magazine - March/April 2021 - 98
IEEE Power & Energy Magazine - March/April 2021 - 99
IEEE Power & Energy Magazine - March/April 2021 - 100
IEEE Power & Energy Magazine - March/April 2021 - Cover3
IEEE Power & Energy Magazine - March/April 2021 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com