IEEE Power & Energy Magazine - May/June 2017 - 77
may/june 2017
nection agreements comply with 11 advanced inverter
requirements-or, upon interconnection approval,
comply with two requirements (fixed power factor and
frequency and voltage ride-through) and have the ca-
pacity to be updated for the remaining nine.
There are numerous additional examples of ongoing imple-
mentations of various technologies to facilitate DER adop-
tion. For instance, Figure 1 shows the results of a recent sur-
vey conducted among U.S. utilities regarding interest in and
ongoing implementation of advanced inverters, DERMS, and
microgrids. The results show that, while utilities expressed
similar interest in all of these technologies, most imple-
mentation projects involve advanced inverters, followed by
microgrids and DERMS.
Individual Approaches to Grid Modernization
An important point to emphasize is that the pace of the tran-
sition toward a modernized grid, particularly on the distri-
bution side, is a function of every utility system and market's
existing and expected conditions and trends. Grid moderniza-
tion and DER proliferation are certainly interrelated, but the
latter is not a requirement for the former. Utilities such as Com-
monwealth Edison (ComEd) and CenterPoint Energy, which
operate in service territories with only incipient penetration lev-
els of DERs, have successfully implemented grid moderniza-
tion initiatives to improve grid reliability, resiliency, and system
efficiency; address growing expectations regarding customer
service; and replace foundational aging infrastructure.
✔ ComEd's Energy Infrastructure Modernization Act,
which includes the deployment of 2,600 smart switches
140
120
100
80
60
40
20
ed
st
Im
pl
e
m
en
tin
g
In
te
re
st
Im
ed
pl
em
en
tin
g
In
te
re
st
Im
ed
pl
em
en
tin
g
0
In
te
re
modernizing their distribution grids and overall practices so
that they are suitable for operation in this new reality.
✔ California's investor-owned utilities, which are experi-
encing some of the highest penetration levels of DERs
in the country, are investigating the use of numerous
advanced technologies to manage the increasing adop-
tion of PV-DG in their service territories. These include
microgrids, energy storage, synchrophasor technology,
and distributed energy resources management sys-
tems (DERMS). Two examples suggest the scope of
these plans.
* Southern California Edison (SCE) has articulated its
vision for grid modernization in its 2015 Distribution
Resources Plan (DRP) and 2018 General Rate Case
filing. In this vision, SCE is planning to improve
safety and reliability while enabling DERs by deploy-
ing technologies in an integrated asset-management
approach with aging infrastructure and other needed
upgrades. These include advancing distribution and
substation automation such as bidirectional sensors
and fault location, isolation, and service restoration
(FLISR) technology; upgrading aging communica-
tion systems; improving long-term planning and
power flow tools, DERMS, and grid management
systems; and streamlining interconnection processes.
Together, these will be coordinated through an enter-
prise architecture across its modernized grid to opti-
mize the use of DERs out to the grid edge, including
the use of smart inverters, and facilitate the aggres-
sive growth of plug-in EVs, energy storage systems,
and solar PVs, together with demand response (DR)
and energy efficiency.
* San Diego Gas and Electric has implemented a mi-
crogrid in the community of Borrego Springs that
consists of a variety of DERs including substation
and community energy storage, conventional gen-
eration, PV-DG, and DR. This microgrid has been
successfully used to minimize the reliability impacts
of planned outages, windstorms, flash floods, and
intense thunderstorms (in the latter case, providing
power for up to 1,056 customers for over 20 h).
✔ Hawaiian Electric, which has some of the highest pen-
etration levels of DERs in the United States and a re-
newable portfolio standard goal of 100% renewables
by 2045, is currently investigating the use of power-
electronics-based shunt and series devices installed at
the grid edge for reactive power support and voltage
regulation of distribution feeders with the prolifera-
tion of PV-DG. These solutions are intended to miti-
gate voltage rise and fluctuations caused by PV-DG
output variability and effectively increase the hosting
capacity of these feeders. Further, the Hawaii Pub-
lic Utilities Commission approved interconnection
rules requesting that customer self-supply systems,
customer grid-supply systems, and standard intercon-
Cooperatives
Investor Owned
Advanced Inverters
DERMSs
Public
Microgrids
figure 1. Utility interest versus implementation of
advanced grid integration technologies. (Source: Smart
Electric Power Alliance, 2016.)
ieee power & energy magazine
77
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2017
IEEE Power & Energy Magazine - May/June 2017 - Cover1
IEEE Power & Energy Magazine - May/June 2017 - Cover2
IEEE Power & Energy Magazine - May/June 2017 - 1
IEEE Power & Energy Magazine - May/June 2017 - 2
IEEE Power & Energy Magazine - May/June 2017 - 3
IEEE Power & Energy Magazine - May/June 2017 - 4
IEEE Power & Energy Magazine - May/June 2017 - 5
IEEE Power & Energy Magazine - May/June 2017 - 6
IEEE Power & Energy Magazine - May/June 2017 - 7
IEEE Power & Energy Magazine - May/June 2017 - 8
IEEE Power & Energy Magazine - May/June 2017 - 9
IEEE Power & Energy Magazine - May/June 2017 - 10
IEEE Power & Energy Magazine - May/June 2017 - 11
IEEE Power & Energy Magazine - May/June 2017 - 12
IEEE Power & Energy Magazine - May/June 2017 - 13
IEEE Power & Energy Magazine - May/June 2017 - 14
IEEE Power & Energy Magazine - May/June 2017 - 15
IEEE Power & Energy Magazine - May/June 2017 - 16
IEEE Power & Energy Magazine - May/June 2017 - 17
IEEE Power & Energy Magazine - May/June 2017 - 18
IEEE Power & Energy Magazine - May/June 2017 - 19
IEEE Power & Energy Magazine - May/June 2017 - 20
IEEE Power & Energy Magazine - May/June 2017 - 21
IEEE Power & Energy Magazine - May/June 2017 - 22
IEEE Power & Energy Magazine - May/June 2017 - 23
IEEE Power & Energy Magazine - May/June 2017 - 24
IEEE Power & Energy Magazine - May/June 2017 - 25
IEEE Power & Energy Magazine - May/June 2017 - 26
IEEE Power & Energy Magazine - May/June 2017 - 27
IEEE Power & Energy Magazine - May/June 2017 - 28
IEEE Power & Energy Magazine - May/June 2017 - 29
IEEE Power & Energy Magazine - May/June 2017 - 30
IEEE Power & Energy Magazine - May/June 2017 - 31
IEEE Power & Energy Magazine - May/June 2017 - 32
IEEE Power & Energy Magazine - May/June 2017 - 33
IEEE Power & Energy Magazine - May/June 2017 - 34
IEEE Power & Energy Magazine - May/June 2017 - 35
IEEE Power & Energy Magazine - May/June 2017 - 36
IEEE Power & Energy Magazine - May/June 2017 - 37
IEEE Power & Energy Magazine - May/June 2017 - 38
IEEE Power & Energy Magazine - May/June 2017 - 39
IEEE Power & Energy Magazine - May/June 2017 - 40
IEEE Power & Energy Magazine - May/June 2017 - 41
IEEE Power & Energy Magazine - May/June 2017 - 42
IEEE Power & Energy Magazine - May/June 2017 - 43
IEEE Power & Energy Magazine - May/June 2017 - 44
IEEE Power & Energy Magazine - May/June 2017 - 45
IEEE Power & Energy Magazine - May/June 2017 - 46
IEEE Power & Energy Magazine - May/June 2017 - 47
IEEE Power & Energy Magazine - May/June 2017 - 48
IEEE Power & Energy Magazine - May/June 2017 - 49
IEEE Power & Energy Magazine - May/June 2017 - 50
IEEE Power & Energy Magazine - May/June 2017 - 51
IEEE Power & Energy Magazine - May/June 2017 - 52
IEEE Power & Energy Magazine - May/June 2017 - 53
IEEE Power & Energy Magazine - May/June 2017 - 54
IEEE Power & Energy Magazine - May/June 2017 - 55
IEEE Power & Energy Magazine - May/June 2017 - 56
IEEE Power & Energy Magazine - May/June 2017 - 57
IEEE Power & Energy Magazine - May/June 2017 - 58
IEEE Power & Energy Magazine - May/June 2017 - 59
IEEE Power & Energy Magazine - May/June 2017 - 60
IEEE Power & Energy Magazine - May/June 2017 - 61
IEEE Power & Energy Magazine - May/June 2017 - 62
IEEE Power & Energy Magazine - May/June 2017 - 63
IEEE Power & Energy Magazine - May/June 2017 - 64
IEEE Power & Energy Magazine - May/June 2017 - 65
IEEE Power & Energy Magazine - May/June 2017 - 66
IEEE Power & Energy Magazine - May/June 2017 - 67
IEEE Power & Energy Magazine - May/June 2017 - 68
IEEE Power & Energy Magazine - May/June 2017 - 69
IEEE Power & Energy Magazine - May/June 2017 - 70
IEEE Power & Energy Magazine - May/June 2017 - 71
IEEE Power & Energy Magazine - May/June 2017 - 72
IEEE Power & Energy Magazine - May/June 2017 - 73
IEEE Power & Energy Magazine - May/June 2017 - 74
IEEE Power & Energy Magazine - May/June 2017 - 75
IEEE Power & Energy Magazine - May/June 2017 - 76
IEEE Power & Energy Magazine - May/June 2017 - 77
IEEE Power & Energy Magazine - May/June 2017 - 78
IEEE Power & Energy Magazine - May/June 2017 - 79
IEEE Power & Energy Magazine - May/June 2017 - 80
IEEE Power & Energy Magazine - May/June 2017 - 81
IEEE Power & Energy Magazine - May/June 2017 - 82
IEEE Power & Energy Magazine - May/June 2017 - 83
IEEE Power & Energy Magazine - May/June 2017 - 84
IEEE Power & Energy Magazine - May/June 2017 - 85
IEEE Power & Energy Magazine - May/June 2017 - 86
IEEE Power & Energy Magazine - May/June 2017 - 87
IEEE Power & Energy Magazine - May/June 2017 - 88
IEEE Power & Energy Magazine - May/June 2017 - 89
IEEE Power & Energy Magazine - May/June 2017 - 90
IEEE Power & Energy Magazine - May/June 2017 - 91
IEEE Power & Energy Magazine - May/June 2017 - 92
IEEE Power & Energy Magazine - May/June 2017 - 93
IEEE Power & Energy Magazine - May/June 2017 - 94
IEEE Power & Energy Magazine - May/June 2017 - 95
IEEE Power & Energy Magazine - May/June 2017 - 96
IEEE Power & Energy Magazine - May/June 2017 - 97
IEEE Power & Energy Magazine - May/June 2017 - 98
IEEE Power & Energy Magazine - May/June 2017 - 99
IEEE Power & Energy Magazine - May/June 2017 - 100
IEEE Power & Energy Magazine - May/June 2017 - 101
IEEE Power & Energy Magazine - May/June 2017 - 102
IEEE Power & Energy Magazine - May/June 2017 - 103
IEEE Power & Energy Magazine - May/June 2017 - 104
IEEE Power & Energy Magazine - May/June 2017 - Cover3
IEEE Power & Energy Magazine - May/June 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com