IEEE Power & Energy Magazine - May/June 2019 - 77
HVdc grid protection does not necessarily
implement the same conventional approach used
for ac system protection.
the fault current and limit it to a desired level instead of
reducing the dc fault current entirely to zero. certain types
of HVdc circuit breakers, e.g., the ones making use of controllable power electronic modules, are capable of actively
limiting the current. superconducting fault-current limiters
use a component that is in superconducting mode during
normal operation. therefore, it presents a low impedance to
the circuit. During faults, the superconducting component is
driven out of superconducting mode, resulting in the loss of
superconducting capabilities and, thereby, presents a high
impedance to the circuit. fault-current-limiting equipment
can be installed in series with the transmission lines. in
this manner, they are able to limit both the transmission
line discharge currents as well as the contributions from
the ac-dc converters. fault current limiters that are located
in series with the ac/dc converters do not affect the line
discharge currents.
High-Speed Switches
Dc high-speed switches (Hsss) can be used to quickly isolate a faulted line from the remaining dc network and operate only under near-zero voltage and current conditions;
therefore, these Hsss are not required to interrupt fault currents. However, depending on the application, these switches
may be required to interrupt small residual currents in the
grid, which, e.g., result from passive discharge of capacitive
or inductive grid components. in case residual currents have
zero crossings, these Hsss may make use of traditional ac
circuit breaker technology. Without current-zero crossings,
the Hsss must provide a sufficiently high countervoltage or
have an auxiliary circuit that creates a zero crossing, e.g.,
a passive resonant circuit used in load transfer breakers in
classic point-to-point HVdc connections.
Classification and Characterization of
Fault-Clearing Strategies for HVdc Grids
HVdc grid protection does not necessarily implement the
same conventional approach used for ac system protection.
in the conventional approach to ac system protection, circuit
breakers are placed throughout the system and used to simultaneously interrupt the fault current and isolate the faulted
component. this has led to a fault-clearing strategy that
divides the power system into zones containing grid elements
such as transformers or transmission lines. in case of a fault,
the protection scheme disconnects and de-energizes just the
zone containing the fault. given the different types of equipment available for HVdc grid protection and the characterismay/june 2019
tics of this equipment, alternatives to the selective fault-clearing strategy exist. regarding these alternatives, the protection
zones used for fault current interruption do not necessarily
coincide with the components that should be isolated. these
fault-clearing strategies can be classified in terms of "extent
of the HVdc grid which is deenergized," an approach followed
in the cigre technical brochure (tB) 739, or described in
terms of "action at the protection zone point-of-connection,"
an approach followed by the european committee for electrotechnical standardization (ceneLec).
in cigre tB 739, fault-clearing strategies are divided
into three main philosophies. in the first philosophy, nonselective fault clearing, the entire HVdc grid is completely
de-energized prior to isolation of the faulted component
under near-zero voltage and current conditions. the faulted
component should be identified during or after grid deenergization and may be automatically isolated using Hsss. After
the faulted component is isolated, the remaining part of the
HVdc grid is reenergized before power flow can resume. in
the second philosophy, partially selective fault clearing, the
HVdc grid is subdivided into several protection zones. Here,
the faulted zone is first quickly isolated from the healthy
zones of the grid. this requires that equipment capable of
interrupting dc fault currents is present at all boundaries of
each protection zone. thereafter, the faulted element within
the faulted zone is isolated, as in that of a nonselective philosophy. then the remaining portion of the initially faulted
zone is reenergized and reconnected to the healthy parts of
the grid. the third philosophy, fully selective fault clearing,
adopts an approach to dc fault clearing similar to the conventional approach in ac systems.
in the approach followed by ceneLec, three main concepts applied within a certain protection zone are defined
based on the impact of dc faults within a protection zone on
all ac and dc points of connection, i.e., 1) continuous operation, 2) temporary stop, and 3) permanent stop. for each of
these concepts, a typical "fault separation time," i.e., the
time at which recovery of the active power flow can start, is
defined. these three main concepts are extended to a total
of five when considering the availability of reactive power
during dc fault separation. for a continuous operation, the
exchange of active power with dc systems (connected at
a c point of connection) and active or reactive power with
ac systems (connected at an ac point of connection) must
remain controllable during the entire fault separation process, resulting in fault separation times of a few milliseconds. in the temporary stop concept, the disruption of active
ieee power & energy magazine
77
IEEE Power & Energy Magazine - May/June 2019
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - May/June 2019
Contents
IEEE Power & Energy Magazine - May/June 2019 - Cover1
IEEE Power & Energy Magazine - May/June 2019 - Cover2
IEEE Power & Energy Magazine - May/June 2019 - Contents
IEEE Power & Energy Magazine - May/June 2019 - 2
IEEE Power & Energy Magazine - May/June 2019 - 3
IEEE Power & Energy Magazine - May/June 2019 - 4
IEEE Power & Energy Magazine - May/June 2019 - 5
IEEE Power & Energy Magazine - May/June 2019 - 6
IEEE Power & Energy Magazine - May/June 2019 - 7
IEEE Power & Energy Magazine - May/June 2019 - 8
IEEE Power & Energy Magazine - May/June 2019 - 9
IEEE Power & Energy Magazine - May/June 2019 - 10
IEEE Power & Energy Magazine - May/June 2019 - 11
IEEE Power & Energy Magazine - May/June 2019 - 12
IEEE Power & Energy Magazine - May/June 2019 - 13
IEEE Power & Energy Magazine - May/June 2019 - 14
IEEE Power & Energy Magazine - May/June 2019 - 15
IEEE Power & Energy Magazine - May/June 2019 - 16
IEEE Power & Energy Magazine - May/June 2019 - 17
IEEE Power & Energy Magazine - May/June 2019 - 18
IEEE Power & Energy Magazine - May/June 2019 - 19
IEEE Power & Energy Magazine - May/June 2019 - 20
IEEE Power & Energy Magazine - May/June 2019 - 21
IEEE Power & Energy Magazine - May/June 2019 - 22
IEEE Power & Energy Magazine - May/June 2019 - 23
IEEE Power & Energy Magazine - May/June 2019 - 24
IEEE Power & Energy Magazine - May/June 2019 - 25
IEEE Power & Energy Magazine - May/June 2019 - 26
IEEE Power & Energy Magazine - May/June 2019 - 27
IEEE Power & Energy Magazine - May/June 2019 - 28
IEEE Power & Energy Magazine - May/June 2019 - 29
IEEE Power & Energy Magazine - May/June 2019 - 30
IEEE Power & Energy Magazine - May/June 2019 - 31
IEEE Power & Energy Magazine - May/June 2019 - 32
IEEE Power & Energy Magazine - May/June 2019 - 33
IEEE Power & Energy Magazine - May/June 2019 - 34
IEEE Power & Energy Magazine - May/June 2019 - 35
IEEE Power & Energy Magazine - May/June 2019 - 36
IEEE Power & Energy Magazine - May/June 2019 - 37
IEEE Power & Energy Magazine - May/June 2019 - 38
IEEE Power & Energy Magazine - May/June 2019 - 39
IEEE Power & Energy Magazine - May/June 2019 - 40
IEEE Power & Energy Magazine - May/June 2019 - 41
IEEE Power & Energy Magazine - May/June 2019 - 42
IEEE Power & Energy Magazine - May/June 2019 - 43
IEEE Power & Energy Magazine - May/June 2019 - 44
IEEE Power & Energy Magazine - May/June 2019 - 45
IEEE Power & Energy Magazine - May/June 2019 - 46
IEEE Power & Energy Magazine - May/June 2019 - 47
IEEE Power & Energy Magazine - May/June 2019 - 48
IEEE Power & Energy Magazine - May/June 2019 - 49
IEEE Power & Energy Magazine - May/June 2019 - 50
IEEE Power & Energy Magazine - May/June 2019 - 51
IEEE Power & Energy Magazine - May/June 2019 - 52
IEEE Power & Energy Magazine - May/June 2019 - 53
IEEE Power & Energy Magazine - May/June 2019 - 54
IEEE Power & Energy Magazine - May/June 2019 - 55
IEEE Power & Energy Magazine - May/June 2019 - 56
IEEE Power & Energy Magazine - May/June 2019 - 57
IEEE Power & Energy Magazine - May/June 2019 - 58
IEEE Power & Energy Magazine - May/June 2019 - 59
IEEE Power & Energy Magazine - May/June 2019 - 60
IEEE Power & Energy Magazine - May/June 2019 - 61
IEEE Power & Energy Magazine - May/June 2019 - 62
IEEE Power & Energy Magazine - May/June 2019 - 63
IEEE Power & Energy Magazine - May/June 2019 - 64
IEEE Power & Energy Magazine - May/June 2019 - 65
IEEE Power & Energy Magazine - May/June 2019 - 66
IEEE Power & Energy Magazine - May/June 2019 - 67
IEEE Power & Energy Magazine - May/June 2019 - 68
IEEE Power & Energy Magazine - May/June 2019 - 69
IEEE Power & Energy Magazine - May/June 2019 - 70
IEEE Power & Energy Magazine - May/June 2019 - 71
IEEE Power & Energy Magazine - May/June 2019 - 72
IEEE Power & Energy Magazine - May/June 2019 - 73
IEEE Power & Energy Magazine - May/June 2019 - 74
IEEE Power & Energy Magazine - May/June 2019 - 75
IEEE Power & Energy Magazine - May/June 2019 - 76
IEEE Power & Energy Magazine - May/June 2019 - 77
IEEE Power & Energy Magazine - May/June 2019 - 78
IEEE Power & Energy Magazine - May/June 2019 - 79
IEEE Power & Energy Magazine - May/June 2019 - 80
IEEE Power & Energy Magazine - May/June 2019 - 81
IEEE Power & Energy Magazine - May/June 2019 - 82
IEEE Power & Energy Magazine - May/June 2019 - 83
IEEE Power & Energy Magazine - May/June 2019 - 84
IEEE Power & Energy Magazine - May/June 2019 - 85
IEEE Power & Energy Magazine - May/June 2019 - 86
IEEE Power & Energy Magazine - May/June 2019 - 87
IEEE Power & Energy Magazine - May/June 2019 - 88
IEEE Power & Energy Magazine - May/June 2019 - 89
IEEE Power & Energy Magazine - May/June 2019 - 90
IEEE Power & Energy Magazine - May/June 2019 - 91
IEEE Power & Energy Magazine - May/June 2019 - 92
IEEE Power & Energy Magazine - May/June 2019 - 93
IEEE Power & Energy Magazine - May/June 2019 - 94
IEEE Power & Energy Magazine - May/June 2019 - 95
IEEE Power & Energy Magazine - May/June 2019 - 96
IEEE Power & Energy Magazine - May/June 2019 - 97
IEEE Power & Energy Magazine - May/June 2019 - 98
IEEE Power & Energy Magazine - May/June 2019 - 99
IEEE Power & Energy Magazine - May/June 2019 - 100
IEEE Power & Energy Magazine - May/June 2019 - 101
IEEE Power & Energy Magazine - May/June 2019 - 102
IEEE Power & Energy Magazine - May/June 2019 - 103
IEEE Power & Energy Magazine - May/June 2019 - 104
IEEE Power & Energy Magazine - May/June 2019 - 105
IEEE Power & Energy Magazine - May/June 2019 - 106
IEEE Power & Energy Magazine - May/June 2019 - 107
IEEE Power & Energy Magazine - May/June 2019 - 108
IEEE Power & Energy Magazine - May/June 2019 - 109
IEEE Power & Energy Magazine - May/June 2019 - 110
IEEE Power & Energy Magazine - May/June 2019 - 111
IEEE Power & Energy Magazine - May/June 2019 - 112
IEEE Power & Energy Magazine - May/June 2019 - 113
IEEE Power & Energy Magazine - May/June 2019 - 114
IEEE Power & Energy Magazine - May/June 2019 - 115
IEEE Power & Energy Magazine - May/June 2019 - 116
IEEE Power & Energy Magazine - May/June 2019 - 117
IEEE Power & Energy Magazine - May/June 2019 - 118
IEEE Power & Energy Magazine - May/June 2019 - 119
IEEE Power & Energy Magazine - May/June 2019 - 120
IEEE Power & Energy Magazine - May/June 2019 - Cover3
IEEE Power & Energy Magazine - May/June 2019 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com