IEEE Power & Energy Magazine - July/August 2018 - 128
in my view (continued from p. 132)
and industry, and there is some historical
animosity toward it that needs to be acknowledged and laid to rest.
In the U.S. utility context, electrification has a close historical association with load building. Since the early
days, utilities have had strong incentives to grow load to increase profits,
expand rate bases, and reduce average
rates. During the first half of the 20th
century, when access to inexpensive
electricity transformed first urban and
then rural life in the United States, electrification served a powerful social purpose. But since the 1970s, in the face
of energy security and environmental
concerns, electric load growth has often
been viewed negatively.
In the energy efficiency paradigm
pioneered by people like Art Rosenfeld
and Amory Lovins decades ago, using
less primary energy to provide the same
energy services made compelling sense
on many levels: lower fuel demand for
thermal generation, less pollution from
burning that fuel, and less need for generating capacity and, with it, lower capital requirements and fewer conflicts
over licensing and land use, as was (and
is) often the case for large hydro dams
and nuclear power plants.
In thermal-dominated systems where
the variable cost of fuel was the lion's
share of generation costs, saving BTUs
meant saving money, and in the 1970s
when much of the generation fleet was oil
powered, it meant less economic dependence on that volatile and conflict-fraught
commodity. Using electricity to heat water
and space in thermal-dominated systems
was about three times as energy intensive,
counting thermodynamic and line losses,
as bypassing the conversion to electricity
and using natural gas directly in furnaces
and water heaters.
While much of the logic of primary
energy efficiency remains valid today,
it has limitations when seen through the
lens of a low-carbon transformation. In
a power system dominated by renewable energy, with near-zero variable cost,
saving primary energy does not translate
directly into lower marginal or average
128
ieee power & energy magazine
cost. More important, even when the direct combustion of fossil fuels is more efficient in a given end use from a primary
energy standpoint, it is generally a worse
option from an emissions standpoint if
the electricity is low carbon. Carbon, not
energy per se, dictates the logic of energy
systems in a climate-friendly future.
It is critical for industry, regulators,
and policy makers to recognize that deep
decarbonization cannot be achieved
through energy efficiency alone or even
a combination of energy efficiency plus
renewable electricity. Electrification is
absolutely required, and in many applications, it may complement or even
displace a focus on energy efficiency.
Beyond a certain level, conventional energy-efficiency investments can produce
diminishing returns for carbon reduction compared to a similar investment in
electrification, as long as the electricity
is low carbon. Electrifying end uses is
not counter to the fundamental purposes
that motivate investments in energy efficiency. Indeed, modeling shows that, in
a U.S. low-carbon transition, the largest
source of energy efficiency will be electrification itself, due to the thermodynamic superiority of electric drive trains
and heat pumps over their combustionbased alternatives.
Getting energy efficiency and electrification to play nice with each other
in the regulatory and policy a renas
may be challenging. Clean-energy advocates have fought hard to incorporate renewable generation and building
energy efficiency in utility plans, and
many will be skeptical about electrification if they see it as threatening
decades of hard-won gains. That may
change as the primary energy-efficiency paradigm is reconsidered in the light
of deep decarbonization.
But there is also no clear mandate
for promoting electrification in current policy. Indeed, if anything, there
are formidable barriers to fuel switching, not least of which are the interests of oil companies and gas utilities.
Current energy-efficiency programs
are designed to stay within their fuel-
type lanes and not change the game by
switching to new energy supplies.
There's no question that energy efficiency remains essential for decarbonization. Some say that natural gas is the
bridge to a low-carbon future, but the
real bridge is energy efficiency. It will
play an outsized role in sectors with limited fuel-switching potential, for example, freight trucking and industrial process heat. In parts of the United States
with no history of efficiency programs,
grossly inefficient building shells, oversized HVAC systems, and antiquated infrastructure, efficiency will still be the
first tool out of the clean-energy toolbox. Efficiency provides a brake on irresponsible, high-carbon load building in
coal-based power systems with no transition plan. Even in a decarbonized system, energy efficiency can help reduce
the scale, cost, and land use impacts of a
low-carbon infrastructure buildout.
Long-Term Policy in
the Electric Economy
Article 4.19 of the Paris Agreement
calls on all countries to develop midcentury strategies for decarbonizing
their economies. The commitments
made at Paris are near term, out to 2025
or 2030, and only promised modest
emission reductions. But the Paris emphasis on the long-term future provides
a platform for strategizing and enacting
transformational changes. Given the
multidecade lifetimes of the most critical infrastructure on both the supply and
demand sides of the energy system (e.g.
power plants, buildings, industrial boilers, and cars and trucks) and the potential for emissions lock-in and stranded
assets, the long-term perspective must
be a factor in near-term decision making
and investment. A key revelation that
emerges from long-term planning-and
is seldom visible in shorter-term analysis-is the need for electrification as the
third pillar accompanying energy efficiency and low-carbon generation.
Deep decarbonization requires a
suite of policies to transform infrastructure and markets, covering all three pillars.
july/august 2018
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2018
Contents
IEEE Power & Energy Magazine - July/August 2018 - Cover1
IEEE Power & Energy Magazine - July/August 2018 - Cover2
IEEE Power & Energy Magazine - July/August 2018 - Contents
IEEE Power & Energy Magazine - July/August 2018 - 2
IEEE Power & Energy Magazine - July/August 2018 - 3
IEEE Power & Energy Magazine - July/August 2018 - 4
IEEE Power & Energy Magazine - July/August 2018 - 5
IEEE Power & Energy Magazine - July/August 2018 - 6
IEEE Power & Energy Magazine - July/August 2018 - 7
IEEE Power & Energy Magazine - July/August 2018 - 8
IEEE Power & Energy Magazine - July/August 2018 - 9
IEEE Power & Energy Magazine - July/August 2018 - 10
IEEE Power & Energy Magazine - July/August 2018 - 11
IEEE Power & Energy Magazine - July/August 2018 - 12
IEEE Power & Energy Magazine - July/August 2018 - 13
IEEE Power & Energy Magazine - July/August 2018 - 14
IEEE Power & Energy Magazine - July/August 2018 - 15
IEEE Power & Energy Magazine - July/August 2018 - 16
IEEE Power & Energy Magazine - July/August 2018 - 17
IEEE Power & Energy Magazine - July/August 2018 - 18
IEEE Power & Energy Magazine - July/August 2018 - 19
IEEE Power & Energy Magazine - July/August 2018 - 20
IEEE Power & Energy Magazine - July/August 2018 - 21
IEEE Power & Energy Magazine - July/August 2018 - 22
IEEE Power & Energy Magazine - July/August 2018 - 23
IEEE Power & Energy Magazine - July/August 2018 - 24
IEEE Power & Energy Magazine - July/August 2018 - 25
IEEE Power & Energy Magazine - July/August 2018 - 26
IEEE Power & Energy Magazine - July/August 2018 - 27
IEEE Power & Energy Magazine - July/August 2018 - 28
IEEE Power & Energy Magazine - July/August 2018 - 29
IEEE Power & Energy Magazine - July/August 2018 - 30
IEEE Power & Energy Magazine - July/August 2018 - 31
IEEE Power & Energy Magazine - July/August 2018 - 32
IEEE Power & Energy Magazine - July/August 2018 - 33
IEEE Power & Energy Magazine - July/August 2018 - 34
IEEE Power & Energy Magazine - July/August 2018 - 35
IEEE Power & Energy Magazine - July/August 2018 - 36
IEEE Power & Energy Magazine - July/August 2018 - 37
IEEE Power & Energy Magazine - July/August 2018 - 38
IEEE Power & Energy Magazine - July/August 2018 - 39
IEEE Power & Energy Magazine - July/August 2018 - 40
IEEE Power & Energy Magazine - July/August 2018 - 41
IEEE Power & Energy Magazine - July/August 2018 - 42
IEEE Power & Energy Magazine - July/August 2018 - 43
IEEE Power & Energy Magazine - July/August 2018 - 44
IEEE Power & Energy Magazine - July/August 2018 - 45
IEEE Power & Energy Magazine - July/August 2018 - 46
IEEE Power & Energy Magazine - July/August 2018 - 47
IEEE Power & Energy Magazine - July/August 2018 - 48
IEEE Power & Energy Magazine - July/August 2018 - 49
IEEE Power & Energy Magazine - July/August 2018 - 50
IEEE Power & Energy Magazine - July/August 2018 - 51
IEEE Power & Energy Magazine - July/August 2018 - 52
IEEE Power & Energy Magazine - July/August 2018 - 53
IEEE Power & Energy Magazine - July/August 2018 - 54
IEEE Power & Energy Magazine - July/August 2018 - 55
IEEE Power & Energy Magazine - July/August 2018 - 56
IEEE Power & Energy Magazine - July/August 2018 - 57
IEEE Power & Energy Magazine - July/August 2018 - 58
IEEE Power & Energy Magazine - July/August 2018 - 59
IEEE Power & Energy Magazine - July/August 2018 - 60
IEEE Power & Energy Magazine - July/August 2018 - 61
IEEE Power & Energy Magazine - July/August 2018 - 62
IEEE Power & Energy Magazine - July/August 2018 - 63
IEEE Power & Energy Magazine - July/August 2018 - 64
IEEE Power & Energy Magazine - July/August 2018 - 65
IEEE Power & Energy Magazine - July/August 2018 - 66
IEEE Power & Energy Magazine - July/August 2018 - 67
IEEE Power & Energy Magazine - July/August 2018 - 68
IEEE Power & Energy Magazine - July/August 2018 - 69
IEEE Power & Energy Magazine - July/August 2018 - 70
IEEE Power & Energy Magazine - July/August 2018 - 71
IEEE Power & Energy Magazine - July/August 2018 - 72
IEEE Power & Energy Magazine - July/August 2018 - 73
IEEE Power & Energy Magazine - July/August 2018 - 74
IEEE Power & Energy Magazine - July/August 2018 - 75
IEEE Power & Energy Magazine - July/August 2018 - 76
IEEE Power & Energy Magazine - July/August 2018 - 77
IEEE Power & Energy Magazine - July/August 2018 - 78
IEEE Power & Energy Magazine - July/August 2018 - 79
IEEE Power & Energy Magazine - July/August 2018 - 80
IEEE Power & Energy Magazine - July/August 2018 - 81
IEEE Power & Energy Magazine - July/August 2018 - 82
IEEE Power & Energy Magazine - July/August 2018 - 83
IEEE Power & Energy Magazine - July/August 2018 - 84
IEEE Power & Energy Magazine - July/August 2018 - 85
IEEE Power & Energy Magazine - July/August 2018 - 86
IEEE Power & Energy Magazine - July/August 2018 - 87
IEEE Power & Energy Magazine - July/August 2018 - 88
IEEE Power & Energy Magazine - July/August 2018 - 89
IEEE Power & Energy Magazine - July/August 2018 - 90
IEEE Power & Energy Magazine - July/August 2018 - 91
IEEE Power & Energy Magazine - July/August 2018 - 92
IEEE Power & Energy Magazine - July/August 2018 - 93
IEEE Power & Energy Magazine - July/August 2018 - 94
IEEE Power & Energy Magazine - July/August 2018 - 95
IEEE Power & Energy Magazine - July/August 2018 - 96
IEEE Power & Energy Magazine - July/August 2018 - 97
IEEE Power & Energy Magazine - July/August 2018 - 98
IEEE Power & Energy Magazine - July/August 2018 - 99
IEEE Power & Energy Magazine - July/August 2018 - 100
IEEE Power & Energy Magazine - July/August 2018 - 101
IEEE Power & Energy Magazine - July/August 2018 - 102
IEEE Power & Energy Magazine - July/August 2018 - 103
IEEE Power & Energy Magazine - July/August 2018 - 104
IEEE Power & Energy Magazine - July/August 2018 - 105
IEEE Power & Energy Magazine - July/August 2018 - 106
IEEE Power & Energy Magazine - July/August 2018 - 107
IEEE Power & Energy Magazine - July/August 2018 - 108
IEEE Power & Energy Magazine - July/August 2018 - 109
IEEE Power & Energy Magazine - July/August 2018 - 110
IEEE Power & Energy Magazine - July/August 2018 - 111
IEEE Power & Energy Magazine - July/August 2018 - 112
IEEE Power & Energy Magazine - July/August 2018 - 113
IEEE Power & Energy Magazine - July/August 2018 - 114
IEEE Power & Energy Magazine - July/August 2018 - 115
IEEE Power & Energy Magazine - July/August 2018 - 116
IEEE Power & Energy Magazine - July/August 2018 - 117
IEEE Power & Energy Magazine - July/August 2018 - 118
IEEE Power & Energy Magazine - July/August 2018 - 119
IEEE Power & Energy Magazine - July/August 2018 - 120
IEEE Power & Energy Magazine - July/August 2018 - 121
IEEE Power & Energy Magazine - July/August 2018 - 122
IEEE Power & Energy Magazine - July/August 2018 - 123
IEEE Power & Energy Magazine - July/August 2018 - 124
IEEE Power & Energy Magazine - July/August 2018 - 125
IEEE Power & Energy Magazine - July/August 2018 - 126
IEEE Power & Energy Magazine - July/August 2018 - 127
IEEE Power & Energy Magazine - July/August 2018 - 128
IEEE Power & Energy Magazine - July/August 2018 - 129
IEEE Power & Energy Magazine - July/August 2018 - 130
IEEE Power & Energy Magazine - July/August 2018 - 131
IEEE Power & Energy Magazine - July/August 2018 - 132
IEEE Power & Energy Magazine - July/August 2018 - Cover3
IEEE Power & Energy Magazine - July/August 2018 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com