IEEE Power & Energy Magazine - July/August 2021 - 78
Ramping constraints may limit the flexibility of CHP-based
systems and, in some cases, drastically limit the type of
services that can be provided.
MES Flexibility Performance Assessment
Even if it is generally not their core business, the provision of
flexibility may represent an opportunity for MES operators.
This flexibility is provided to markets through the aggregation
platform and must comply with regulatory and market
requirements. From the MES perspective, the basic and
intuitive notion of flexibility consists of the available upward
and downward generation and consumption margins. The
system's physical limits identify the maximum amount of
flexibility that the MES can provide (Figure 3). An appropriate
combination of the individual technologies at the
MES site level enables to increase power margins, ramp-rate
abilities, and available energy amounts. If storage devices
are present in the MES, it is necessary to take the system's
stored energy into account.
The requirements for supply/demand balancing for a specific
energy carrier and across energy carriers may affect
the flexibility that can be provided by an MES. Meeting the
demand sets the system baseline for assessing " operational
flexibility, " which represents the upward and downward margins
in production and consumption for this baseline. The
need to ensure balancing across multiple energy carriers
in the MES introduces further constraints and leads to the
concept of " carrier-balancing flexibility. " Regulatory frameworks
also introduce constraints on service provision, such as
requirements for the full activation time, minimum duration
of provision, and shape (e.g., whether the capacity committed
for downward and upward services must be the same, as in
symmetric products, or may be different, as for asymmetric
products). Finally, market organization and operation (i.e.,
the service cost structure and economic aspects related to
bids) further reduce the flexibility that is provided (the market
flexibility). In different case studies, MES operational performance
was assessed by looking into quantifying, by using
dedicated simulation and optimization models, the ability
of plants to provide flexibility while satisfying their energy
demand in base case and improved configurations and with
and without the provision of relevant market services.
Flexibility From Individual Technologies
Table 3 presents the main technologies and energy carriers
in the models developed for assessing case studies
as well as their main technical characteristics. Two
main categories can be distinguished: district heating
(and cooling) systems and industrial plants. Both involve
combined heat and power (CHP) technologies, which
represent traditional gas, biogas, and biomass fuel-based
thermal and electrical production. In district heating systems,
CHPs are operated in combination with heat pumps
and electric or gas boilers. Heat pumps are efficient technologies
for producing heat and for cooling, and they
are particularly suitable for exploiting renewables from
the electricity supply. Figure 4 represents district heating
systems, distinguishing between (a) centralized
and (b) decentralized heat production and two industrial
systems, namely, (c) a wastewater treatment plant with
biogas production and (d) a paper mill. In terms of flexibility,
ramping constraints may limit the flexibility of
CHP-based systems and, in some cases, drastically limit
the type of services that can be provided, e.g., frequency
containment reserve (FCR) functions, which demand
a very fast reaction. The flexibility provided by heat
pump electrical loads is generally fast enough to cover
slow market services, such as redispatching, and more
demanding ones, including manual frequency restoration
reserve (mFRR) and automatic FRR (aFRR) functions.
Storage devices (thermal and biogas) that exist in the
base case (Table 3) and are introduced in the improved
Physical
Device
Characteristics
Operation
Demand
Supply
Balancing
Carriers
Multicarrier
Demand
Supply
Assessment Flexibility at MES Level
Regulation
Fundamental
Requirements
(e.g., FAT and
Minimum Power)
Regulation
Other Requirements
(e.g., Service
Symmetry and
Time Duration)
Assessment Flexibility at Regulatory
Framework Level
Market
Prices and Costs
Associated With
Bids (e.g., Tariffs,
Incentives, and
Taxes)
Market
Market Bid
Success
Rate
Assessment Flexibility at Market
Framework Level
figure 3. An assessment chain for flexibility service provision. FAT: full activation time.
78
ieee power & energy magazine
july/august 2021
IEEE Power & Energy Magazine - July/August 2021
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - July/August 2021
Contents
IEEE Power & Energy Magazine - July/August 2021 - Cover1
IEEE Power & Energy Magazine - July/August 2021 - Cover2
IEEE Power & Energy Magazine - July/August 2021 - Contents
IEEE Power & Energy Magazine - July/August 2021 - 2
IEEE Power & Energy Magazine - July/August 2021 - 3
IEEE Power & Energy Magazine - July/August 2021 - 4
IEEE Power & Energy Magazine - July/August 2021 - 5
IEEE Power & Energy Magazine - July/August 2021 - 6
IEEE Power & Energy Magazine - July/August 2021 - 7
IEEE Power & Energy Magazine - July/August 2021 - 8
IEEE Power & Energy Magazine - July/August 2021 - 9
IEEE Power & Energy Magazine - July/August 2021 - 10
IEEE Power & Energy Magazine - July/August 2021 - 11
IEEE Power & Energy Magazine - July/August 2021 - 12
IEEE Power & Energy Magazine - July/August 2021 - 13
IEEE Power & Energy Magazine - July/August 2021 - 14
IEEE Power & Energy Magazine - July/August 2021 - 15
IEEE Power & Energy Magazine - July/August 2021 - 16
IEEE Power & Energy Magazine - July/August 2021 - 17
IEEE Power & Energy Magazine - July/August 2021 - 18
IEEE Power & Energy Magazine - July/August 2021 - 19
IEEE Power & Energy Magazine - July/August 2021 - 20
IEEE Power & Energy Magazine - July/August 2021 - 21
IEEE Power & Energy Magazine - July/August 2021 - 22
IEEE Power & Energy Magazine - July/August 2021 - 23
IEEE Power & Energy Magazine - July/August 2021 - 24
IEEE Power & Energy Magazine - July/August 2021 - 25
IEEE Power & Energy Magazine - July/August 2021 - 26
IEEE Power & Energy Magazine - July/August 2021 - 27
IEEE Power & Energy Magazine - July/August 2021 - 28
IEEE Power & Energy Magazine - July/August 2021 - 29
IEEE Power & Energy Magazine - July/August 2021 - 30
IEEE Power & Energy Magazine - July/August 2021 - 31
IEEE Power & Energy Magazine - July/August 2021 - 32
IEEE Power & Energy Magazine - July/August 2021 - 33
IEEE Power & Energy Magazine - July/August 2021 - 34
IEEE Power & Energy Magazine - July/August 2021 - 35
IEEE Power & Energy Magazine - July/August 2021 - 36
IEEE Power & Energy Magazine - July/August 2021 - 37
IEEE Power & Energy Magazine - July/August 2021 - 38
IEEE Power & Energy Magazine - July/August 2021 - 39
IEEE Power & Energy Magazine - July/August 2021 - 40
IEEE Power & Energy Magazine - July/August 2021 - 41
IEEE Power & Energy Magazine - July/August 2021 - 42
IEEE Power & Energy Magazine - July/August 2021 - 43
IEEE Power & Energy Magazine - July/August 2021 - 44
IEEE Power & Energy Magazine - July/August 2021 - 45
IEEE Power & Energy Magazine - July/August 2021 - 46
IEEE Power & Energy Magazine - July/August 2021 - 47
IEEE Power & Energy Magazine - July/August 2021 - 48
IEEE Power & Energy Magazine - July/August 2021 - 49
IEEE Power & Energy Magazine - July/August 2021 - 50
IEEE Power & Energy Magazine - July/August 2021 - 51
IEEE Power & Energy Magazine - July/August 2021 - 52
IEEE Power & Energy Magazine - July/August 2021 - 53
IEEE Power & Energy Magazine - July/August 2021 - 54
IEEE Power & Energy Magazine - July/August 2021 - 55
IEEE Power & Energy Magazine - July/August 2021 - 56
IEEE Power & Energy Magazine - July/August 2021 - 57
IEEE Power & Energy Magazine - July/August 2021 - 58
IEEE Power & Energy Magazine - July/August 2021 - 59
IEEE Power & Energy Magazine - July/August 2021 - 60
IEEE Power & Energy Magazine - July/August 2021 - 61
IEEE Power & Energy Magazine - July/August 2021 - 62
IEEE Power & Energy Magazine - July/August 2021 - 63
IEEE Power & Energy Magazine - July/August 2021 - 64
IEEE Power & Energy Magazine - July/August 2021 - 65
IEEE Power & Energy Magazine - July/August 2021 - 66
IEEE Power & Energy Magazine - July/August 2021 - 67
IEEE Power & Energy Magazine - July/August 2021 - 68
IEEE Power & Energy Magazine - July/August 2021 - 69
IEEE Power & Energy Magazine - July/August 2021 - 70
IEEE Power & Energy Magazine - July/August 2021 - 71
IEEE Power & Energy Magazine - July/August 2021 - 72
IEEE Power & Energy Magazine - July/August 2021 - 73
IEEE Power & Energy Magazine - July/August 2021 - 74
IEEE Power & Energy Magazine - July/August 2021 - 75
IEEE Power & Energy Magazine - July/August 2021 - 76
IEEE Power & Energy Magazine - July/August 2021 - 77
IEEE Power & Energy Magazine - July/August 2021 - 78
IEEE Power & Energy Magazine - July/August 2021 - 79
IEEE Power & Energy Magazine - July/August 2021 - 80
IEEE Power & Energy Magazine - July/August 2021 - 81
IEEE Power & Energy Magazine - July/August 2021 - 82
IEEE Power & Energy Magazine - July/August 2021 - 83
IEEE Power & Energy Magazine - July/August 2021 - 84
IEEE Power & Energy Magazine - July/August 2021 - 85
IEEE Power & Energy Magazine - July/August 2021 - 86
IEEE Power & Energy Magazine - July/August 2021 - 87
IEEE Power & Energy Magazine - July/August 2021 - 88
IEEE Power & Energy Magazine - July/August 2021 - 89
IEEE Power & Energy Magazine - July/August 2021 - 90
IEEE Power & Energy Magazine - July/August 2021 - 91
IEEE Power & Energy Magazine - July/August 2021 - 92
IEEE Power & Energy Magazine - July/August 2021 - 93
IEEE Power & Energy Magazine - July/August 2021 - 94
IEEE Power & Energy Magazine - July/August 2021 - 95
IEEE Power & Energy Magazine - July/August 2021 - 96
IEEE Power & Energy Magazine - July/August 2021 - 97
IEEE Power & Energy Magazine - July/August 2021 - 98
IEEE Power & Energy Magazine - July/August 2021 - 99
IEEE Power & Energy Magazine - July/August 2021 - 100
IEEE Power & Energy Magazine - July/August 2021 - 101
IEEE Power & Energy Magazine - July/August 2021 - 102
IEEE Power & Energy Magazine - July/August 2021 - 103
IEEE Power & Energy Magazine - July/August 2021 - 104
IEEE Power & Energy Magazine - July/August 2021 - 105
IEEE Power & Energy Magazine - July/August 2021 - 106
IEEE Power & Energy Magazine - July/August 2021 - 107
IEEE Power & Energy Magazine - July/August 2021 - 108
IEEE Power & Energy Magazine - July/August 2021 - Cover3
IEEE Power & Energy Magazine - July/August 2021 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com