IEEE Power & Energy Magazine - September/October 2020 - 97

In addition, enquiries were made about
the possibility of automatically reeling the silk by electric power, which
would improve the product quality. A
simultaneous test run was conducted
for heating and reeling the cocoons
by using electric power at a smaller
scale. At approximately the same time,
a major fire in the boiler destroyed
all the steam-based filatures. A modern filature building was constructed,
containing 1,000 basins (664 of which
were for spinning and 336 for cooking) equipped with electric heaters.
The spinning and cooking basins were
heated by coils consuming 1,000 and
800 W, respectively. To cater to the demand, a receiving substation was built
on the site of the silk factory. It accommodated a 30,000-V incoming line and
four 500-kW transformers, with one as
a spare.

Kashmir Electric
Railway Scheme
The principal means of communication
to the Kashmir valley was by the JVC
Road that stretched roughly 200 mi. It
took four years to construct and was
completed in 1887. The annual maintenance cost of the road was very high,
at approximately US$500 per mile, and
the money was chiefly spent on repairing the slips and bridges, which would
often be washed away. The difficult
and expensive transport communication had been a great obstacle to the development of the area's resources and
thus the prosperity of the valley. The
Kashmir government had a good reason for developing better communication along this route.
The idea of building railways to
Kashmir had been under consideration
since 1886. The limited availability of
fuel presented a problem. There was
wood along the route, but its constant
use would be highly detrimental due to
deforested hillsides. Coal would have
to be brought from far-flung areas, such
as Bengal, which would be too expensive. These considerations influenced
the utilization of the abundant power
of streams to run the railway. Electric
traction offered advantages, such as the
september/october 2020

use of lighter engines that had better
adhesion than steam locomotives, since
steam engine-based railways could not
overcome steep gradients without the
assistance of a rack rail. Several railways that worked by this method were
already in existence, including Sansstad-Engleberg line near Lucerne,
Switzerland.
In 1890, General de Bourbel, the
chief engineer of the state, had surveyed to find the most suitable railway
routes into the valley. The railway was
estimated to cost roughly 300 lakhs
rupees (US$10 million). This was too
large a sum for Kashmir Durbar to arrange unless the project was thrown
open to private companies. The British lost interest in the scheme once
they perceived it as having a reduced
geostrategic relevance. However, the
railway project was taken into serious
consideration a decade later, after the
initiation of hydroelectric power in the
state. The project required the cooperation of the British government and
Kashmir State. The line was planned to
start at a station in Sarai Kala beyond
Rawalpindi on the North Western Railway of India, which would be broad
gauge (5 ft, 6 in) and operated by steam
power. The Kashmir section would be
narrow gauge (meter gauge), owned by
Kashmir State, and operated by elec-

tricity, which would reduce the cost by
US$2 million.
The loose nature of the soil in that
part of the Himalayas caused disastrous slips and huge boulders to fall
whenever there was unusually heavy
rain. Any railway line going into Kashmir had to travel along those mountain slopes. A shelf would have to be
cut into the hillside and a firm, level
roadbed would have to be built. Engineers deemed the topography unfit
for a railway, believing that not even a
light electric line would prove feasible
on the Jhelum valley route. After the
invention of Louis Brennan's monorail system, the Kashmir government
hoped to resolve the transportation
difficulty across the mountains, as no
shelf would be required (Figure 11).
The government assisted Brennan in
his studies of the monorail. However,
it was found that the monorail would
be impractical, chiefly because sharp
turns would be required and the danger
of slips would be high.
At the suggestion of de Lotbiniere, it
was decided to investigate the feasibility of an aerial cableway, with the help
of private enterprise. Forbes, Campbell, and Company, a London firm,
was persuaded to undertake a survey to
ascertain the possibility of establishing
a cableway. The study demonstrated, to

figure 10. The ends of six cocoon-reeling filatures at Srinagar. (Inset: side view.)
(From Sir Thomas Wardle, Kashmir: Its New Silk Industry. London, 1904.)
ieee power & energy magazine

97



IEEE Power & Energy Magazine - September/October 2020

Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - September/October 2020

Contents
IEEE Power & Energy Magazine - September/October 2020 - Cover1
IEEE Power & Energy Magazine - September/October 2020 - Cover2
IEEE Power & Energy Magazine - September/October 2020 - Contents
IEEE Power & Energy Magazine - September/October 2020 - 2
IEEE Power & Energy Magazine - September/October 2020 - 3
IEEE Power & Energy Magazine - September/October 2020 - 4
IEEE Power & Energy Magazine - September/October 2020 - 5
IEEE Power & Energy Magazine - September/October 2020 - 6
IEEE Power & Energy Magazine - September/October 2020 - 7
IEEE Power & Energy Magazine - September/October 2020 - 8
IEEE Power & Energy Magazine - September/October 2020 - 9
IEEE Power & Energy Magazine - September/October 2020 - 10
IEEE Power & Energy Magazine - September/October 2020 - 11
IEEE Power & Energy Magazine - September/October 2020 - 12
IEEE Power & Energy Magazine - September/October 2020 - 13
IEEE Power & Energy Magazine - September/October 2020 - 14
IEEE Power & Energy Magazine - September/October 2020 - 15
IEEE Power & Energy Magazine - September/October 2020 - 16
IEEE Power & Energy Magazine - September/October 2020 - 17
IEEE Power & Energy Magazine - September/October 2020 - 18
IEEE Power & Energy Magazine - September/October 2020 - 19
IEEE Power & Energy Magazine - September/October 2020 - 20
IEEE Power & Energy Magazine - September/October 2020 - 21
IEEE Power & Energy Magazine - September/October 2020 - 22
IEEE Power & Energy Magazine - September/October 2020 - 23
IEEE Power & Energy Magazine - September/October 2020 - 24
IEEE Power & Energy Magazine - September/October 2020 - 25
IEEE Power & Energy Magazine - September/October 2020 - 26
IEEE Power & Energy Magazine - September/October 2020 - 27
IEEE Power & Energy Magazine - September/October 2020 - 28
IEEE Power & Energy Magazine - September/October 2020 - 29
IEEE Power & Energy Magazine - September/October 2020 - 30
IEEE Power & Energy Magazine - September/October 2020 - 31
IEEE Power & Energy Magazine - September/October 2020 - 32
IEEE Power & Energy Magazine - September/October 2020 - 33
IEEE Power & Energy Magazine - September/October 2020 - 34
IEEE Power & Energy Magazine - September/October 2020 - 35
IEEE Power & Energy Magazine - September/October 2020 - 36
IEEE Power & Energy Magazine - September/October 2020 - 37
IEEE Power & Energy Magazine - September/October 2020 - 38
IEEE Power & Energy Magazine - September/October 2020 - 39
IEEE Power & Energy Magazine - September/October 2020 - 40
IEEE Power & Energy Magazine - September/October 2020 - 41
IEEE Power & Energy Magazine - September/October 2020 - 42
IEEE Power & Energy Magazine - September/October 2020 - 43
IEEE Power & Energy Magazine - September/October 2020 - 44
IEEE Power & Energy Magazine - September/October 2020 - 45
IEEE Power & Energy Magazine - September/October 2020 - 46
IEEE Power & Energy Magazine - September/October 2020 - 47
IEEE Power & Energy Magazine - September/October 2020 - 48
IEEE Power & Energy Magazine - September/October 2020 - 49
IEEE Power & Energy Magazine - September/October 2020 - 50
IEEE Power & Energy Magazine - September/October 2020 - 51
IEEE Power & Energy Magazine - September/October 2020 - 52
IEEE Power & Energy Magazine - September/October 2020 - 53
IEEE Power & Energy Magazine - September/October 2020 - 54
IEEE Power & Energy Magazine - September/October 2020 - 55
IEEE Power & Energy Magazine - September/October 2020 - 56
IEEE Power & Energy Magazine - September/October 2020 - 57
IEEE Power & Energy Magazine - September/October 2020 - 58
IEEE Power & Energy Magazine - September/October 2020 - 59
IEEE Power & Energy Magazine - September/October 2020 - 60
IEEE Power & Energy Magazine - September/October 2020 - 61
IEEE Power & Energy Magazine - September/October 2020 - 62
IEEE Power & Energy Magazine - September/October 2020 - 63
IEEE Power & Energy Magazine - September/October 2020 - 64
IEEE Power & Energy Magazine - September/October 2020 - 65
IEEE Power & Energy Magazine - September/October 2020 - 66
IEEE Power & Energy Magazine - September/October 2020 - 67
IEEE Power & Energy Magazine - September/October 2020 - 68
IEEE Power & Energy Magazine - September/October 2020 - 69
IEEE Power & Energy Magazine - September/October 2020 - 70
IEEE Power & Energy Magazine - September/October 2020 - 71
IEEE Power & Energy Magazine - September/October 2020 - 72
IEEE Power & Energy Magazine - September/October 2020 - 73
IEEE Power & Energy Magazine - September/October 2020 - 74
IEEE Power & Energy Magazine - September/October 2020 - 75
IEEE Power & Energy Magazine - September/October 2020 - 76
IEEE Power & Energy Magazine - September/October 2020 - 77
IEEE Power & Energy Magazine - September/October 2020 - 78
IEEE Power & Energy Magazine - September/October 2020 - 79
IEEE Power & Energy Magazine - September/October 2020 - 80
IEEE Power & Energy Magazine - September/October 2020 - 81
IEEE Power & Energy Magazine - September/October 2020 - 82
IEEE Power & Energy Magazine - September/October 2020 - 83
IEEE Power & Energy Magazine - September/October 2020 - 84
IEEE Power & Energy Magazine - September/October 2020 - 85
IEEE Power & Energy Magazine - September/October 2020 - 86
IEEE Power & Energy Magazine - September/October 2020 - 87
IEEE Power & Energy Magazine - September/October 2020 - 88
IEEE Power & Energy Magazine - September/October 2020 - 89
IEEE Power & Energy Magazine - September/October 2020 - 90
IEEE Power & Energy Magazine - September/October 2020 - 91
IEEE Power & Energy Magazine - September/October 2020 - 92
IEEE Power & Energy Magazine - September/October 2020 - 93
IEEE Power & Energy Magazine - September/October 2020 - 94
IEEE Power & Energy Magazine - September/October 2020 - 95
IEEE Power & Energy Magazine - September/October 2020 - 96
IEEE Power & Energy Magazine - September/October 2020 - 97
IEEE Power & Energy Magazine - September/October 2020 - 98
IEEE Power & Energy Magazine - September/October 2020 - 99
IEEE Power & Energy Magazine - September/October 2020 - 100
IEEE Power & Energy Magazine - September/October 2020 - 101
IEEE Power & Energy Magazine - September/October 2020 - 102
IEEE Power & Energy Magazine - September/October 2020 - 103
IEEE Power & Energy Magazine - September/October 2020 - 104
IEEE Power & Energy Magazine - September/October 2020 - 105
IEEE Power & Energy Magazine - September/October 2020 - 106
IEEE Power & Energy Magazine - September/October 2020 - 107
IEEE Power & Energy Magazine - September/October 2020 - 108
IEEE Power & Energy Magazine - September/October 2020 - Cover3
IEEE Power & Energy Magazine - September/October 2020 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091020
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070820
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050620
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030420
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010220
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091019
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070819
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050619
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030419
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010219
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091018
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070818
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050618
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030418
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010218
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091017
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070817
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050617
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030417
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010217
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091016
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070816
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050616
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030416
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010216
https://www.nxtbook.com/nxtbooks/ieee/powerenergy_010216
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091015
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070815
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050615
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030415
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010215
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111214
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091014
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070814
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050614
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030414
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010214
https://www.nxtbookmedia.com