IEEE Power & Energy Magazine - Grid Edge 2023 - 56
Propelled by applications ranging from portable devices to
EVs and PHEVs, Li-nickel-manganese-cobalt-oxide (LNMC)
battery technology with high voltage has been introduced to
improve energy density. LNMC batteries are increasingly
taking the place of LFP batteries in EV applications. Nevertheless,
large-scale LNMC storage deployment in the electric
grid faces some challenges due to its relatively short cycle life
and high cost. It should be pointed out that Li-titanate-oxide
(LTO)-based anode materials for Li-ion batteries show great
potential because of their much longer cycle life, higher power
density, and better low-temperature tolerance compared to
LFP and LNMC batteries. LTO batteries, therefore, tend to
have a growing market share in high-power applications, such
as frequency regulation, with decreasing cost. High-energydensity
Li-ion batteries, including Li-sulphur and Li-air batteries,
are being actively studied, motivated by their application
to EVs. They may also be suitable technologies for
next-generation utility-scale energy storage.
Li-ion batteries have been deployed to support the electric
grid, as shown in Table 3, which summarizes several battery
energy storage applications. Demonstration projects have
ranged from hundred-kilowatt-scale to tens of megawatt-scale
installations. Li-ion batteries are involved in generation, transmission,
distribution, and end user support, playing a crucial
role in renewable capacity firming, load leveling, peak shaving,
capital deferral, and frequency regulation. Energy storage
systems equipped with Li-ion batteries are rapidly evolving and
advancing to augment capacity scale and demonstrate suitability
for a number of grid applications. Li-ion battery technologies
may show cost benefits in the near future due to growing
manufacturing maturity and economies of scale. Thousands of
large-capacity battery cells are used through serial and parallel
connections, which require a high degree of cell consistency
within a battery-pack system. It remains challenging to maximize
battery energy utilization in pack-level applications where
either maintenance or active balancing is imperative.
NaS Battery
The NaS battery was pioneered by the Ford Motor Company
with the goal of powering early-model electric cars in the
1960s. This technology was subsequently sold to NGK Insulators,
which demonstrated utility-scale NaS battery applications
in the late 1990s. Since 2002, this type of battery has been
commercialized and has gradually grown to lead the market in
large-scale energy storage for the electric grid.
The internal structure and working principle of an NaS
battery are illustrated in Figure 3. As opposed to the batteries
discussed previously, this battery type is composed of a molten
sulphur anode, a molten sodium cathode, and solid beta
alumina ceramic electrolyte. The charge and discharge cycles
have to be operated in temperatures over 300 °C, such that
sulphur and sodium exist in a molten state. External heating
table 3. Li-ion battery energy storage systems for grid applications.
Project Name
Santa Rita Jail Smart Grid
Advanced Energy Storage
System
Anchorage Area Battery Energy
Storage System
National Wind and Solar Energy
Storage and Transmission
Demonstration Project (III)
Orkney Storage
Tehachapi Wind Energy Storage
Project-Southern California
Edison
Giheung Samsung SDI Project
Feldheim Regional Regulating
Power Station
Rabbit Hill Energy Storage
Project
56
ieee power & energy magazine
Location
California,
United States
Alaska,
United States
Energy
Application Functionality
32 MW/0.25 h Microgrid with renewable generation and
large-scale energy storage, balancing load
peaks and valleys
25 MW/0.6 h
Electric energy time shift, electric supply
reserve capacity spinning, load leveling,
transportable transmission/distribution,
upgrade deferral
Hebei, China 3 MW/3 h
Scotland,
United
Kingdom
California,
United States
Gyeonggi-do,
South Korea
Brandenburg,
Germany
Texas,
United States
Frequency regulation, ramping, renewables
capacity firming, renewables energy time
shift
2 MW/0.25 h Transmission congestion relief
8 MW/4 h
Electric supply capacity, renewables
capacity firming, transmission congestion
relief, transportable transmission/distribution
upgrade deferral, voltage support
1 MW/10 h
1 MW/1 h
1 MW/0.5 h
Frequency regulation, transmission
congestion relief, voltage support
Frequency regulation, renewables capacity
firming, transmission upgrades due to wind
Electric energy time shift, frequency
regulation, renewables energy time shift
Year of
Installation
2012
2012
2012
2013
2014
2015
2015
2016
september/october 2017
IEEE Power & Energy Magazine - Grid Edge 2023
Table of Contents for the Digital Edition of IEEE Power & Energy Magazine - Grid Edge 2023
Contents
IEEE Power & Energy Magazine - Grid Edge 2023 - Cover1
IEEE Power & Energy Magazine - Grid Edge 2023 - Cover2
IEEE Power & Energy Magazine - Grid Edge 2023 - Contents
IEEE Power & Energy Magazine - Grid Edge 2023 - 2
IEEE Power & Energy Magazine - Grid Edge 2023 - 3
IEEE Power & Energy Magazine - Grid Edge 2023 - 4
IEEE Power & Energy Magazine - Grid Edge 2023 - 5
IEEE Power & Energy Magazine - Grid Edge 2023 - 6
IEEE Power & Energy Magazine - Grid Edge 2023 - 7
IEEE Power & Energy Magazine - Grid Edge 2023 - 8
IEEE Power & Energy Magazine - Grid Edge 2023 - 9
IEEE Power & Energy Magazine - Grid Edge 2023 - 10
IEEE Power & Energy Magazine - Grid Edge 2023 - 11
IEEE Power & Energy Magazine - Grid Edge 2023 - 12
IEEE Power & Energy Magazine - Grid Edge 2023 - 13
IEEE Power & Energy Magazine - Grid Edge 2023 - 14
IEEE Power & Energy Magazine - Grid Edge 2023 - 15
IEEE Power & Energy Magazine - Grid Edge 2023 - 16
IEEE Power & Energy Magazine - Grid Edge 2023 - 17
IEEE Power & Energy Magazine - Grid Edge 2023 - 18
IEEE Power & Energy Magazine - Grid Edge 2023 - 19
IEEE Power & Energy Magazine - Grid Edge 2023 - 20
IEEE Power & Energy Magazine - Grid Edge 2023 - 21
IEEE Power & Energy Magazine - Grid Edge 2023 - 22
IEEE Power & Energy Magazine - Grid Edge 2023 - 23
IEEE Power & Energy Magazine - Grid Edge 2023 - 24
IEEE Power & Energy Magazine - Grid Edge 2023 - 25
IEEE Power & Energy Magazine - Grid Edge 2023 - 26
IEEE Power & Energy Magazine - Grid Edge 2023 - 27
IEEE Power & Energy Magazine - Grid Edge 2023 - 28
IEEE Power & Energy Magazine - Grid Edge 2023 - 29
IEEE Power & Energy Magazine - Grid Edge 2023 - 30
IEEE Power & Energy Magazine - Grid Edge 2023 - 31
IEEE Power & Energy Magazine - Grid Edge 2023 - 32
IEEE Power & Energy Magazine - Grid Edge 2023 - 33
IEEE Power & Energy Magazine - Grid Edge 2023 - 34
IEEE Power & Energy Magazine - Grid Edge 2023 - 35
IEEE Power & Energy Magazine - Grid Edge 2023 - 36
IEEE Power & Energy Magazine - Grid Edge 2023 - 37
IEEE Power & Energy Magazine - Grid Edge 2023 - 38
IEEE Power & Energy Magazine - Grid Edge 2023 - 39
IEEE Power & Energy Magazine - Grid Edge 2023 - 40
IEEE Power & Energy Magazine - Grid Edge 2023 - 41
IEEE Power & Energy Magazine - Grid Edge 2023 - 42
IEEE Power & Energy Magazine - Grid Edge 2023 - 43
IEEE Power & Energy Magazine - Grid Edge 2023 - 44
IEEE Power & Energy Magazine - Grid Edge 2023 - 45
IEEE Power & Energy Magazine - Grid Edge 2023 - 46
IEEE Power & Energy Magazine - Grid Edge 2023 - 47
IEEE Power & Energy Magazine - Grid Edge 2023 - 48
IEEE Power & Energy Magazine - Grid Edge 2023 - 49
IEEE Power & Energy Magazine - Grid Edge 2023 - 50
IEEE Power & Energy Magazine - Grid Edge 2023 - 51
IEEE Power & Energy Magazine - Grid Edge 2023 - 52
IEEE Power & Energy Magazine - Grid Edge 2023 - 53
IEEE Power & Energy Magazine - Grid Edge 2023 - 54
IEEE Power & Energy Magazine - Grid Edge 2023 - 55
IEEE Power & Energy Magazine - Grid Edge 2023 - 56
IEEE Power & Energy Magazine - Grid Edge 2023 - 57
IEEE Power & Energy Magazine - Grid Edge 2023 - 58
IEEE Power & Energy Magazine - Grid Edge 2023 - 59
IEEE Power & Energy Magazine - Grid Edge 2023 - 60
IEEE Power & Energy Magazine - Grid Edge 2023 - 61
IEEE Power & Energy Magazine - Grid Edge 2023 - 62
IEEE Power & Energy Magazine - Grid Edge 2023 - 63
IEEE Power & Energy Magazine - Grid Edge 2023 - 64
IEEE Power & Energy Magazine - Grid Edge 2023 - 65
IEEE Power & Energy Magazine - Grid Edge 2023 - 66
IEEE Power & Energy Magazine - Grid Edge 2023 - 67
IEEE Power & Energy Magazine - Grid Edge 2023 - 68
IEEE Power & Energy Magazine - Grid Edge 2023 - 69
IEEE Power & Energy Magazine - Grid Edge 2023 - 70
IEEE Power & Energy Magazine - Grid Edge 2023 - 71
IEEE Power & Energy Magazine - Grid Edge 2023 - 72
IEEE Power & Energy Magazine - Grid Edge 2023 - 73
IEEE Power & Energy Magazine - Grid Edge 2023 - 74
IEEE Power & Energy Magazine - Grid Edge 2023 - 75
IEEE Power & Energy Magazine - Grid Edge 2023 - 76
IEEE Power & Energy Magazine - Grid Edge 2023 - 77
IEEE Power & Energy Magazine - Grid Edge 2023 - 78
IEEE Power & Energy Magazine - Grid Edge 2023 - 79
IEEE Power & Energy Magazine - Grid Edge 2023 - 80
IEEE Power & Energy Magazine - Grid Edge 2023 - 81
IEEE Power & Energy Magazine - Grid Edge 2023 - 82
IEEE Power & Energy Magazine - Grid Edge 2023 - 83
IEEE Power & Energy Magazine - Grid Edge 2023 - 84
IEEE Power & Energy Magazine - Grid Edge 2023 - 85
IEEE Power & Energy Magazine - Grid Edge 2023 - 86
IEEE Power & Energy Magazine - Grid Edge 2023 - 87
IEEE Power & Energy Magazine - Grid Edge 2023 - 88
IEEE Power & Energy Magazine - Grid Edge 2023 - 89
IEEE Power & Energy Magazine - Grid Edge 2023 - 90
IEEE Power & Energy Magazine - Grid Edge 2023 - 91
IEEE Power & Energy Magazine - Grid Edge 2023 - 92
IEEE Power & Energy Magazine - Grid Edge 2023 - 93
IEEE Power & Energy Magazine - Grid Edge 2023 - 94
IEEE Power & Energy Magazine - Grid Edge 2023 - 95
IEEE Power & Energy Magazine - Grid Edge 2023 - 96
IEEE Power & Energy Magazine - Grid Edge 2023 - 97
IEEE Power & Energy Magazine - Grid Edge 2023 - 98
IEEE Power & Energy Magazine - Grid Edge 2023 - 99
IEEE Power & Energy Magazine - Grid Edge 2023 - 100
IEEE Power & Energy Magazine - Grid Edge 2023 - 101
IEEE Power & Energy Magazine - Grid Edge 2023 - 102
IEEE Power & Energy Magazine - Grid Edge 2023 - 103
IEEE Power & Energy Magazine - Grid Edge 2023 - 104
IEEE Power & Energy Magazine - Grid Edge 2023 - 105
IEEE Power & Energy Magazine - Grid Edge 2023 - 106
IEEE Power & Energy Magazine - Grid Edge 2023 - 107
IEEE Power & Energy Magazine - Grid Edge 2023 - 108
IEEE Power & Energy Magazine - Grid Edge 2023 - Cover3
IEEE Power & Energy Magazine - Grid Edge 2023 - Cover4
https://www.nxtbook.com/nxtbooks/pes/powerenergy_gridedge_2023
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050622
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030422
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010222
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111221
https://www.nxtbook.com/nxtbooks/pes/powerenergy_091021
https://www.nxtbook.com/nxtbooks/pes/powerenergy_070821
https://www.nxtbook.com/nxtbooks/pes/powerenergy_050621
https://www.nxtbook.com/nxtbooks/pes/powerenergy_030421
https://www.nxtbook.com/nxtbooks/pes/powerenergy_010221
https://www.nxtbook.com/nxtbooks/pes/powerenergy_111220
https://www.nxtbookmedia.com