Food Protection Trends - July/August 2017 - 274
actual measurements or observations of CLs of times and/
or temperatures need to be recorded. For the variable
sampling plan, the actual core temperatures observed
must be recorded for each fish in the sample to estimate
the mean (µ) and standard deviation (σ) for all the fish in
the precook batch.
Normal distribution parameter estimators
A computer can be used by the fish preparation personnel
to estimate µ and σ from the sample mean
, as well as
the sample standard deviation(s), thereby allowing for the
determination of acceptance of the batch.
The use of the range/d2 to estimate the standard deviation,
σ, was first suggested by Tippett (43) in 1925. An excellent
explanation of the mathematical derivation and the statistical
validity is detailed by Luko (31). A list of d2 factors for n = 2
thru 100 was published in Grant and Leavenworth (21), and
selected values are listed in Table 2 (7).
The median
can be used as an estimator of the mean
in a normally-distributed population, with n > 25, which
has been shown to be adequate by Hozo et al. (25). With
these two pieces of knowledge, median
and range/d2,
decisions can be made (e.g., determining whether the fish
have been cooked sufficiently), using statistical methods
when those techniques are needed. If the estimates are done
manually, i.e., without using a calculator, the median and
range/d2 can be used to estimate µ and σ (2). The median
and range/d2 is offered so that a factory without a computer
could still use this technique.
The range of core temperatures will impact how close the
lowest measured temperature will be to the value calculated
to be three standard deviations (range/d2) below the mean
or median. For a fixed sample size, the standard deviation
will increase with the size of the range. It is beneficial to the
factory operators to minimize the range of the precooking
core temperatures. The goal is to make the actual minimum
core temperature as close as possible to the calculated lower
limit of the core temperature.
Tests for normality
To use the variable sampling plan, processors will need
to verify that a normal distribution provides a good model for the distribution of the actual core temperatures
being measured. There are good discussions of testing
for normality or near-normality in Geary (20) and Hart
and Hart (24). Two statistical tests for normality that
work well for grouped data are the Ryan-Joiner test (38)
and the Shapiro-Wilk test (40); these are similar tests
(6). The data can also be easily analyzed and plotted
in Minitab © or another statistical commercial software.
The Shapiro-Wilk test is available online (10). The Ryan-Joiner test is available in Minitab© and can be easily
calculated with a computer spreadsheet with a statistical
package installed. The spreadsheet application (to be
274
Food Protection Trends July/August
discussed in a future paper) uses the Ryan-Joiner method
for ascertaining normality.
METHODS AND MATERIALS
Sample size determination
The Minitab© statistical software system was used to
develop the sample sizes for attribute and variable sampling
plans, depending on confidence limits and reliability or
percent acceptable. The sample size, with sampling by
attribute, can change depending on the size of the population
being sampled. If the approximate number of pieces in the
lot is known, the attribute plan will have fewer samples
than it would have if an infinite lot size was assumed. A
detailed example of how the sampling sizes were developed
for a variable acceptance plan using the sample median and
standard deviation is presented in Appendix B.
Testing core temperature data for normality
To test if the core temperature data are normally
distributed, two completely different data sets were
collected from the same tuna processing factory and
tested for normality. The first data set was collected from
four different size groups of fish, but with different core
temperature distributions (ranges) that were standardized
and combined into one data set for analysis by use of a
Minitab normality plot. The second data set was provided
by one of the authors (30), who collected precooking exit
core temperatures from 24 fish, each from 296 precooking
cycles, covering nine different fish size groups. Each 24fish sample had a histogram charted for inspection and
was tested for normality with a Minitab normality plot.
The Ryan-Joiner statistic was calculated and recorded for
all the data sets.
Testing attribute data for normality
No normality tests were required or conducted: the
test used is a simple pass/fail test of whether or not the
temperature passes the minimum target temperature.
Modeling how the lower limit of the tolerance interval
changes based on a fixed minimum core temperature
and varying ranges of core temperatures
The range in core temperatures will impact the
lower end of the tolerance limit or percent acceptable.
This approach was modeled by fixing the lowest core
temperature and varying the range. The minimum
measured core temperature of 60°C was chosen and the
temperature ranges were varied in increments of 5°C, so
Max/Min of 60°C/60°C, Max/ Min of 65°/60°C, Max/
Min of 70°/60°C and so forth were modeled. Using that
information, we could estimate a median (midpoint of
an ordered data values) and estimate the batch standard
deviation, using range/d2. We used an n of 60 with a d2
value of 4.638 from Table 2.
Table of Contents for the Digital Edition of Food Protection Trends - July/August 2017
Contents
Food Protection Trends - July/August 2017 - Cover1
Food Protection Trends - July/August 2017 - Cover2
Food Protection Trends - July/August 2017 - Contents
Food Protection Trends - July/August 2017 - 234
Food Protection Trends - July/August 2017 - 235
Food Protection Trends - July/August 2017 - 236
Food Protection Trends - July/August 2017 - 237
Food Protection Trends - July/August 2017 - 238
Food Protection Trends - July/August 2017 - 239
Food Protection Trends - July/August 2017 - 240
Food Protection Trends - July/August 2017 - 241
Food Protection Trends - July/August 2017 - 242
Food Protection Trends - July/August 2017 - 243
Food Protection Trends - July/August 2017 - 244
Food Protection Trends - July/August 2017 - 245
Food Protection Trends - July/August 2017 - 246
Food Protection Trends - July/August 2017 - 247
Food Protection Trends - July/August 2017 - 248
Food Protection Trends - July/August 2017 - 249
Food Protection Trends - July/August 2017 - 250
Food Protection Trends - July/August 2017 - 251
Food Protection Trends - July/August 2017 - 252
Food Protection Trends - July/August 2017 - 253
Food Protection Trends - July/August 2017 - 254
Food Protection Trends - July/August 2017 - 255
Food Protection Trends - July/August 2017 - 256
Food Protection Trends - July/August 2017 - 257
Food Protection Trends - July/August 2017 - 258
Food Protection Trends - July/August 2017 - 259
Food Protection Trends - July/August 2017 - 260
Food Protection Trends - July/August 2017 - 261
Food Protection Trends - July/August 2017 - 262
Food Protection Trends - July/August 2017 - 263
Food Protection Trends - July/August 2017 - 264
Food Protection Trends - July/August 2017 - 265
Food Protection Trends - July/August 2017 - 266
Food Protection Trends - July/August 2017 - 267
Food Protection Trends - July/August 2017 - 268
Food Protection Trends - July/August 2017 - 269
Food Protection Trends - July/August 2017 - 270
Food Protection Trends - July/August 2017 - 271
Food Protection Trends - July/August 2017 - 272
Food Protection Trends - July/August 2017 - 273
Food Protection Trends - July/August 2017 - 274
Food Protection Trends - July/August 2017 - 275
Food Protection Trends - July/August 2017 - 276
Food Protection Trends - July/August 2017 - 277
Food Protection Trends - July/August 2017 - 278
Food Protection Trends - July/August 2017 - 279
Food Protection Trends - July/August 2017 - 280
Food Protection Trends - July/August 2017 - 281
Food Protection Trends - July/August 2017 - 282
Food Protection Trends - July/August 2017 - 283
Food Protection Trends - July/August 2017 - 284
Food Protection Trends - July/August 2017 - 285
Food Protection Trends - July/August 2017 - 286
Food Protection Trends - July/August 2017 - 287
Food Protection Trends - July/August 2017 - 288
Food Protection Trends - July/August 2017 - 289
Food Protection Trends - July/August 2017 - 290
Food Protection Trends - July/August 2017 - 291
Food Protection Trends - July/August 2017 - 292
Food Protection Trends - July/August 2017 - 293
Food Protection Trends - July/August 2017 - 294
Food Protection Trends - July/August 2017 - 295
Food Protection Trends - July/August 2017 - 296
Food Protection Trends - July/August 2017 - 297
Food Protection Trends - July/August 2017 - 298
Food Protection Trends - July/August 2017 - 299
Food Protection Trends - July/August 2017 - 300
Food Protection Trends - July/August 2017 - 301
Food Protection Trends - July/August 2017 - 302
Food Protection Trends - July/August 2017 - 303
Food Protection Trends - July/August 2017 - 304
Food Protection Trends - July/August 2017 - 305
Food Protection Trends - July/August 2017 - 306
Food Protection Trends - July/August 2017 - 307
Food Protection Trends - July/August 2017 - 308
Food Protection Trends - July/August 2017 - Cover3
Food Protection Trends - July/August 2017 - Cover4
https://www.nxtbook.com/nxtbooks/trilix/fpt_20241112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20240910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20240708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20240506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20240304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20240102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20231112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20230910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20230708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20230506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20230304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20230102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20221112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20220910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20220708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20220506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20220304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20220102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20211112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20210910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20210708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20210506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20210304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20210102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20201112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20200910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20200708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20200506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20200304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20200102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20191112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20190910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20190708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20190506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20190304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20190102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20181112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20180910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20180708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20180506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20180304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20180102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20171112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20170910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20170708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20170506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20170304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20170102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20161112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20160910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20160708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20160506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20160304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20160102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20151112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20150910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20150708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20150506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20150304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20150102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20141112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20140910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20140708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20140506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20140304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20140102
https://www.nxtbook.com/nxtbooks/trilix/fpt_20131112
https://www.nxtbook.com/nxtbooks/trilix/fpt_20130910
https://www.nxtbook.com/nxtbooks/trilix/fpt_20130708
https://www.nxtbook.com/nxtbooks/trilix/fpt_20130506
https://www.nxtbook.com/nxtbooks/trilix/fpt_20130304
https://www.nxtbook.com/nxtbooks/trilix/fpt_20130102
https://www.nxtbook.com/nxtbooks/trilix/fpt_201212
https://www.nxtbook.com/nxtbooks/trilix/fpt_201211
https://www.nxtbook.com/nxtbooks/trilix/fpt_201210
https://www.nxtbook.com/nxtbooks/trilix/fpt_201209
https://www.nxtbook.com/nxtbooks/trilix/fpt_201208
https://www.nxtbook.com/nxtbooks/trilix/fpt_201207
https://www.nxtbook.com/nxtbooks/trilix/fpt_201206
https://www.nxtbook.com/nxtbooks/trilix/fpt_201205
https://www.nxtbook.com/nxtbooks/trilix/fpt_201204
https://www.nxtbook.com/nxtbooks/trilix/fpt_201203
https://www.nxtbook.com/nxtbooks/trilix/fpt_201202
https://www.nxtbook.com/nxtbooks/trilix/fpt_201201
https://www.nxtbook.com/nxtbooks/trilix/fpt_201112
https://www.nxtbook.com/nxtbooks/trilix/fpt_201111
https://www.nxtbook.com/nxtbooks/trilix/fpt_201110
https://www.nxtbook.com/nxtbooks/trilix/fpt_201109
https://www.nxtbook.com/nxtbooks/trilix/fpt_201108
https://www.nxtbook.com/nxtbooks/trilix/fpt_201107
https://www.nxtbook.com/nxtbooks/trilix/fpt_201106
https://www.nxtbook.com/nxtbooks/trilix/fpt_201105
https://www.nxtbook.com/nxtbooks/trilix/fpt_201104
https://www.nxtbook.com/nxtbooks/trilix/fpt_201103
https://www.nxtbook.com/nxtbooks/trilix/fpt_201102
https://www.nxtbook.com/nxtbooks/trilix/fpt_201101
https://www.nxtbook.com/nxtbooks/trilix/fpt_201012
https://www.nxtbook.com/nxtbooks/trilix/fpt_201011
https://www.nxtbook.com/nxtbooks/trilix/fpt_201010
https://www.nxtbook.com/nxtbooks/trilix/fpt_201009
https://www.nxtbook.com/nxtbooks/trilix/fpt_201008
https://www.nxtbook.com/nxtbooks/trilix/fpt_201007
https://www.nxtbook.com/nxtbooks/trilix/fpt_201006
https://www.nxtbook.com/nxtbooks/trilix/fpt_201005
https://www.nxtbook.com/nxtbooks/trilix/fpt_201004
https://www.nxtbook.com/nxtbooks/trilix/fpt_201003
https://www.nxtbook.com/nxtbooks/trilix/fpt_201002
https://www.nxtbook.com/nxtbooks/trilix/fpt_201001
https://www.nxtbook.com/nxtbooks/trilix/fpt_200912
https://www.nxtbook.com/nxtbooks/trilix/fpt_200911
https://www.nxtbook.com/nxtbooks/trilix/fpt_200910
https://www.nxtbook.com/nxtbooks/trilix/fpt_200909
https://www.nxtbook.com/nxtbooks/trilix/fpt_200908
https://www.nxtbook.com/nxtbooks/trilix/fpt_200907
https://www.nxtbook.com/nxtbooks/trilix/fpt_200906
https://www.nxtbook.com/nxtbooks/trilix/fpt_200905
https://www.nxtbook.com/nxtbooks/trilix/fpt_200904
https://www.nxtbook.com/nxtbooks/trilix/fpt_200903
https://www.nxtbook.com/nxtbooks/trilix/fpt_200902
https://www.nxtbook.com/nxtbooks/trilix/fpt_200901
https://www.nxtbook.com/nxtbooks/trilix/fpt_200812
https://www.nxtbook.com/nxtbooks/trilix/fpt_200811
https://www.nxtbook.com/nxtbooks/trilix/fpt_200810
https://www.nxtbook.com/nxtbooks/trilix/fpt_200809
https://www.nxtbook.com/nxtbooks/trilix/fpt_200808
https://www.nxtbook.com/nxtbooks/trilix/fpt_200807
https://www.nxtbookmedia.com