Electronics Protection - November/December 2013 - (Page 6)
Feature
Silicones for High Reliability and Yield in Electronic Applications
Bob Umland, Marketing & Sales Director, Electronics and
Engineering, NuSil Technology
Silicones have been used for decades in electronics, aerospace
and other applications wherein harsh environments with temperature extremes are common. These siloxane-based polymeric
systems are unique polymers compared to standard organic-based
materials due to their atomic composition. The low modulus of
their crosslinked networks allows them to absorb stresses during thermal cycling as well as to resist degradation at continuous
operating temperatures up to 250°C and greater. Silicones have
low glass transition temperatures (Tg) ranging from approximately
-115°C to -60°C, which keep their elastomeric systems flexible in
cold environments and when experiencing vibration. Thermally
conductive silicones provide protection to sensitive electronic
components and systems. The silicone matrix is an essential polymer compatible with a variety of fillers due to its unique chemistry, making silicones excellent materials for use as the binder for
a variety of thermally conductive fillers where high level loadings
can be achieved without dramatically increasing the shear stress.
As electronics are becoming smaller, thinner, vertically stacked
and require more power, silicone becomes more desirable to increase reliability. The history and prolific success of silicone speaks
to its capacity for reliability. Silicone is typically non-hazardous in
its "neat" state once cured and complies with the restricted levels
of the regulated chemicals listed in the ROHS and WEEE directives.
In medical devices, silicones have proven they can be manufactured to have high purity for robustness in high-risk applications.
Quantifiably, and most relevant for electronics applications,
silicones can be processed to have low D4/D5 (< 50 ppm) content
as well as to comply with the specifications outlined in NASA SPR0022A and ESA PSS-014-702, which require a maximum allowable total mass loss (TML) of 1.0 percent and Collected Volatile
Condensable Material (CVCM) of 0.1%1,2.
This reduces risk of fogging, delamination and other failure-inducing occurrences, which volatile species of impure material can
cause. Silicones for electronics can also be optimized to exhibit
high purity with regard to ionic content <20 ppm of Na, K and Cl,
and their permeability to moisture, a most brutal contaminant,
can be adjusted as needed for a given electronic device. Because
water is detrimental to many components, extremely low water
vapor transmission rates (WVTR) are often imperative of encapsulating materials. Understanding the opportunities and limitations
of silicone allows the formulator or engineer to choose the best
options available for maximum performance and protection of
components in the harsh environments of electronic applications.
Silicone in Electronics
For their ability to withstand exposure to high temperatures
such as in lead-free solder reflow and for longer durations when
compared to other polymeric materials, silicone encapsulants are
used to protect the components against shock/vibration, moisture, dust and other environmental hazards3. Although naturally
insulating with dielectric strengths typically greater than 400 V/mil
(15.6 kV/mm), dielectric constant at ~2.5 and volume resistivity
at >1X1012 ohm-cm, silicone can be made to be conductive when
needed. For instance, as the processing capability of semiconductor devices increases and chip size decreases for compact electronic modules, the need for thermal management increases. Even
with a heat sink directly in contact with a chip, heat may not transfer efficiently if the mating surfaces are at all rough or irregular.
6
To enhance the thermal contact between the heat sink and the
die, Thermal Interface Materials (TIM) are utilized between the
two surfaces. Under mechanical pressure, the soft TIMs conform
to the microscopic surface contours of the adjacent solid surfaces
and increase the microscopic area of contact between them. The
thermal conductivity of the material then assists to reduce the
temperature drop across this contact. Lead-free solder reflow
temperatures of >260°C and high heat created during operation
(>100°C) cause greater temperature extremes during the thermal
cycling in the electronic package. Stress within the electronic assembly will increase when it is comprised of a myriad of materials with various Coefficients of Friction (CTE). This stress induces
metal fatigue in the solder and can cause cracking of the solder
joint. An adhesive or encapsulant in the gap between the printed
circuit board and chip helps minimize the shear stress by mechanically coupling the board to the die and restricting the relative lateral motion. This coupling reduces the stress on the solder joints
and converts the in-plane stress to a bending stress.
The electronic packaging industry has used epoxy adhesives
and encapsulants for years as thermal management materials such
as TIMs and underfills4 for their strong adhesion and low CTEs.
Silicones may have high CTE relative to the organic-based thermosets, but compared to epoxies, silicones have very low modulus.
This helps absorb stress incurred from thermal cycling when in
hybrid devices, reducing to little or no significance the high CTE
they may possess relative to organic thermosets such as epoxies.
Historically, silicone
greases have been popular thermal management
components for electronic applications since
they are easy to use and
impart minimal stress.
These materials are excellent in applications involving flat surfaces or in
which risk of shear stress
is high. However, greases
are mobile and can
"pump out" of the device
after extensive thermal
cycling. This complication can be preemptively
combated by crosslinking
the silicone covalently.
This links all the polymers
Table 1. Molecular and Property comparitogether into a threeson of silicone versus epoxy.
dimensional network,
forming an elastomer and
greatly sidestepping creep and mobility. The more bonds created
between vinyl and hydride, the higher the crosslink density of the
silicone and, generally speaking, the greater the hardness of the
elastomer. Theoretically, the resulting tradeoff is an increase in
modulus, but this can be avoided with a platinum addition cure
silicone material. Addition cure silicones are optimized to contain
specific amounts of hydrides on the crosslinker and vinyls on the
polymer network. These react in the siloxane system to form a
three-dimensional network in which there is no generation of
small molecules (Table 2) and generally less than 2 percent shrink-
November/December 2013
www.ElectronicsProtectionMagazine.com
http://www.ElectronicsProtectionMagazine.com
Table of Contents for the Digital Edition of Electronics Protection - November/December 2013
New Features Make F-Series TeraFrame Gen 3 One of CPI’s Most Advanced Cabinets
Silicones for High Reliability and Yield in Electronic Applications
Surge and Transient Protection for Telephone, CATV & Satellite Services
Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values
Understanding NEMA Ratings for Electrical Enclosures
Silent Air Cooling: A New Approach to Thermal Management
VadaTech Releases Rugged Conduction-Cooled MicroTCA Ecosystem
Directable Inverted Blowers Deliver High Volume Air Flow
Cima NanoTech Launches Ultra Low Resistance Sante EMI Shielding Film
Littelfuse Introduces Surge-Tolerant Fuses
ProTek Devices’ TVS Array Provides Circuit Protection in Computing Applications
Reell’s PolyTorq Technology Expands Capabilities For Hinge and Torque Insert Applications
Industry News
Electronics Protection - November/December 2013
https://www.nxtbook.com/nxtbooks/webcom/ep_2017summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2017spring
https://www.nxtbook.com/nxtbooks/webcom/ep_2017winter
https://www.nxtbook.com/nxtbooks/webcom/ep_2016fall
https://www.nxtbook.com/nxtbooks/webcom/ep_2016summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2016spring
https://www.nxtbook.com/nxtbooks/webcom/ep_2015winter
https://www.nxtbook.com/nxtbooks/webcom/ep_2015fall
https://www.nxtbook.com/nxtbooks/webcom/ep_2015summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2015spring
https://www.nxtbook.com/nxtbooks/webcom/ep_2014winter
https://www.nxtbook.com/nxtbooks/webcom/ep_2014fall
https://www.nxtbook.com/nxtbooks/webcom/ep_2014summer
https://www.nxtbook.com/nxtbooks/webcom/ep_2014spring
https://www.nxtbook.com/nxtbooks/webcom/ep_20140102
https://www.nxtbook.com/nxtbooks/webcom/ep_20131112
https://www.nxtbook.com/nxtbooks/webcom/ep_20130910
https://www.nxtbook.com/nxtbooks/webcom/ep_20130708
https://www.nxtbook.com/nxtbooks/webcom/ep_20130506
https://www.nxtbook.com/nxtbooks/webcom/ep_20130304
https://www.nxtbook.com/nxtbooks/webcom/ep_20130102
https://www.nxtbook.com/nxtbooks/webcom/ep_20121112
https://www.nxtbook.com/nxtbooks/webcom/ep_20120910
https://www.nxtbook.com/nxtbooks/webcom/ep_20120607
https://www.nxtbook.com/nxtbooks/webcom/ep_20120304
https://www.nxtbook.com/nxtbooks/webcom/ep_20120102
https://www.nxtbook.com/nxtbooks/webcom/ep_20111112
https://www.nxtbook.com/nxtbooks/webcom/ep_20110910
https://www.nxtbook.com/nxtbooks/webcom/ep_20110607
https://www.nxtbookmedia.com