Magnetics Business & Technology - Summer 2015 - (Page 12)
FEATURE ARTICLE
Spintronics on Paper: The Whys and Wherefores
By Meriem Akin, Lutz Rissing
Computerizing information has enabled paper to dissociate itself
from being merely a passive carrier for ink. Due to its unique technical properties (such as light weight, mechanical bendability, porosity,
moisture intake, chemical resistivity, thermo-mechanical stability),
low cost and resource abundance, disruptive technology based on
paper has emerged in the past 10 years: medical diagnosis systems,
interactive displays, foldable microscopes, robust civil architecture
and pulp-based computing to name a few [1-5].
At the institute of Micro-Production Technology, we research the
fabrication of micro-electro-mechanical systems based on paper,
and we exploit clean room fabrication processes (Figure 1) for manufacturing these systems. Currently, we research the use of paper
as an interposer for magnetic coatings. In particular, we want to
understand the magnetic response of a wide range of magnetic
materials (ferri-, ferro and antiferromagnetic) when deposited onto
paper substrates.
While we use paper as a surface carrier for thin layers of magnetic materials, the integration of magnetic materials within the
body of the paper is state of the art. Magnetic papers can be realized by dip coating paper sheets into monomer solutions filled with
magnetic nanoparticles [6]. Also, embedding magnetic particles
during the synthesis process of cellulose allows for the fabrication
of super-paramagnetic papers [7]. As a matter of fact, paper with
embedded magnetic stripes is in daily use for parking garage and
subway tickets, etc. However, the superficial magnetic coatings of
these paper-based systems are thick enough to not interplay with
the paper surface.
As yet, existing paper-based systems make use of binary magnetic phenomena. By depositing magnetic silicones onto paper-based
cantilevers, the resulting valve can open and close to control the
fluid flow in lab on a paper [8]. A further example is paper actuators that are fabricated by impregnating paper with a ferrofluid and
subsequent laser machining to the desired geometry [9].
Ergo, would it be possible to insert more intricate magnetic phenomena, such as spintronic effects (anisotropic, giant or tunnel magneto-resistance) on a sheet of paper? And, how could we exploit these
phenomena in engineering unorthodox paper-based devices for leisure, medical and educational use? These are some of the questions
that we tackle at the Institute of Micro Production Technology.
Exploratory Study
We believe that the network topology of paper is decisive for the
magneto-resistive response of a continuous thin deck of a magnetic
material when deposited onto paper substrates (Figure 2). Due to
the non-planar and stochastic orientation of the paper fibers, each
local fiber region exhibits a different direction of electrical current
with respect to the direction of the magnetic field. One may consider
each fiber as a distinct thin and long magnetic stripe. Therefore, the
magnetic response of a paper-based spintronic system is expected to
be a complex superposition of local spintronic phenomena.
In particular, we report on our findings with Permalloy (Py:Ni81Fe19),
which classically exhibits anisotropic magneto-resistance at room
temperature. We opted for sputter deposition as a dry coating
technique, and we chose clean room paper (latex impregnated) as
the substrate material. As a reference substrate material, we used
fused silica with superior surface quality. In order to separate material behavior from surface topology, we replicated the surface
12
Magnetics Business & Technology * Summer 2015
Figure 1. Examples of clean room fabrication processes that were
adapted to clean room paper substrates at the Institute of Micro Production Technology. Fabrication techniques: (a) Photolithography, (b)
sputter deposition of structured seed layers and (c) electroplating,
packaging techniques: (a) Wire bonding and (e) soldering on electroplated layer.
Figure 2. Scanning electron micrographs of the topology of the clean
room paper as coated with Py:Ni81Fe19: (a) Surface view, (b) detail of
the surface and (c) cross section view. (d) Computer model of a coated
paper system subject to a magnetic field.
Figure 3. MOKE micrograph of Py:Ni81Fe19 on paper.
www.MagneticsMagazine.com
http://www.MagneticsMagazine.com
Table of Contents for the Digital Edition of Magnetics Business & Technology - Summer 2015
Editor's Choice
Bonded Magnets: A Versitile Class of Permanent Magnets
Spintronics on Paper: The Whys and Wherefores
Magnets, Materials & Assemblies
Electromagnetics
Software & Design
Research & Development
Industry News
Marketplace / Advertising Index
Spontaneous Thoughts: The Rate Determining Step
Magnetics Business & Technology - Summer 2015
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2024januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2023januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2022januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2021januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020julyaugust
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2020januaryfebruary
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019novemberdecember
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019septemberoctober
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019julyaug
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019mayjune
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019marchapril
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2019janfeb
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2018spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2017spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2016spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2015spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2014spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2013spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012summer
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2012spring
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011winter
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011fall
https://www.nxtbook.com/nxtbooks/webcom/magnetics_2011summer
https://www.nxtbookmedia.com