Tech Briefs Magazine - May 2024 - 21

Diamond Maker Technology Simulates Alien Geology
in Laboratories
The device enhances researchers ability to speciate natural elements while investigating
geologic processes.
Johnson Space Center, Houston, TX
I
nnovators at NASA Johnson Space Center
have developed a novel, double capsule
control system that allows for high
temperature and high-pressure geologic
research to be performed in a contained
environment relevant to a broad array of
materials. It can also yield the speciation
of redox-sensitive elements and is even
capable of creating geologic conditions
necessary to birth diamonds when used
in conjunction with a multi-anvil press.
Users of this technology can specify a
wide range of oxygen fugacity (fO2) values
during experiments. The fO2 is a
measure of rock oxidation that influences
planetary structure and evolution and
contributes directly to the study of our
galactic origins. It commands some of
the fundamental chemical and physical
properties in planetary materials, including
electrical conductivity, grain-growth
kinetics, and phase stability.
This technology was previously used to
replicate fO2 environments relevant to
core samples from the Moon and those
obtained from the Earth's deep crust. It
may be further extended to higher pressure
and higher temperature studies
where greater control of a specific experimental
sample environment might allow
unique chemical bonding and reactivity
that would not be possible in systems that
utilize the standard approaches.
NASA's fO2 control system was developed
to enable high-pressure, high-temperature
experimental studies of astromaterials
at fO2 values relevant to the
sample of interest. However, it may also
be useful for the synthesis of materials
where fO2 control is required (e.g., synthesis
of crystal structures that might be
stable under higher oxygen pressure).
Further use cases may include mineral
or melt syntheses, metal-silicate or mineral-melt
element partitioning, phase
equilibria studies, and the possible development
of new chemical and mineral
compounds that could not be manufactured
in laboratories before.
NASA is actively seeking licensees to
commercialize this technology. Please
contact NASA's Licensing Concierge at
Agency-Patent-Licensing@mail.nasa.gov
or call at 202-358-7432 to initiate licensing
discussions. For more information, visit
https://technology.nasa.gov/patent/
MSC-TOPS-89.
A New Material That Excels at Trapping Hydrogen
The technology demonstrates benefits of using cold spray coating for fusion applications.
University of Wisconsin-Madison, Madison, WI
U
niversity of Wisconsin-Madison engineers
have used a spray coating technology
to produce a new workhorse material
that can withstand the harsh
conditions inside a fusion reactor.
The advance, detailed in a paper published
recently in the journal Physica Scripta,
could enable more efficient compact
fusion reactors that are easier to repair
and maintain.
" The fusion community is urgently looking
for new manufacturing approaches to
economically produce large plasma-facing
components in fusion reactors, " said Lead
Author Mykola Ialovega. " Our technology
shows considerable improvements over
current approaches. With this research, we
are the first to demonstrate the benefits of
using cold spray coating technology for fusion
applications. "
The researchers used a cold spray process
to deposit a coating of tantalum, a
Tech Briefs, May 2024
metal that can withstand high temperatures,
on stainless steel. They tested their
cold spray tantalum coating in the extreme
conditions relevant to a fusion reactor
and found that it performed very
well. Importantly, they discovered the material
is exceptionally good at trapping
hydrogen particles, which is beneficial for
compact fusion devices.
" We discovered that the cold spray tantalum
coating absorbs much more hydrogen
than bulk tantalum because of the
unique microstructure of the coating, "
said Professor Kumar Sridharan.
" The simplicity of the cold spray process
makes it very practical for applications, "
Sridharan added.
In fusion devices, plasma - an ionized
hydrogen gas - is heated to extremely
high temperatures, and atomic nuclei in
the plasma collide and fuse. That fusion
process produces energy. However, some
www.techbriefs.com
hydrogen ions may get neutralized and
escape from the plasma.
" These hydrogen neutral particles
cause power losses in the plasma, which
makes it very challenging to sustain a hot
plasma and have an effective small fusion
reactor, " said Ialovega.
That's why the researchers set out to
create a new surface for plasma-facing reactor
walls that could trap hydrogen particles
as they collide with the walls.
Tantalum is inherently good at absorbing
hydrogen - and the researchers suspected
that creating a tantalum coating
using a cold spray process would boost its
hydrogen-trapping abilities even more.
Creating a cold sprayed coating is
somewhat like using a can of spray paint.
It consists of propelling particles of the
coating material at supersonic velocities
onto a surface. Upon impact, the particles
flatten like pancakes and coat the
21
https://technology.nasa.gov/patent/MSC-TOPS-89 http://www.techbriefs.com

Tech Briefs Magazine - May 2024

Table of Contents for the Digital Edition of Tech Briefs Magazine - May 2024

Tech Briefs Magazine - May 2024 - Intro
Tech Briefs Magazine - May 2024 - Sponsor
Tech Briefs Magazine - May 2024 - Cov1
Tech Briefs Magazine - May 2024 - Cov2
Tech Briefs Magazine - May 2024 - 1
Tech Briefs Magazine - May 2024 - 2
Tech Briefs Magazine - May 2024 - 3
Tech Briefs Magazine - May 2024 - 4
Tech Briefs Magazine - May 2024 - 5
Tech Briefs Magazine - May 2024 - 6
Tech Briefs Magazine - May 2024 - 7
Tech Briefs Magazine - May 2024 - 8
Tech Briefs Magazine - May 2024 - 9
Tech Briefs Magazine - May 2024 - 10
Tech Briefs Magazine - May 2024 - 11
Tech Briefs Magazine - May 2024 - 12
Tech Briefs Magazine - May 2024 - 13
Tech Briefs Magazine - May 2024 - 14
Tech Briefs Magazine - May 2024 - 15
Tech Briefs Magazine - May 2024 - 16
Tech Briefs Magazine - May 2024 - 16A
Tech Briefs Magazine - May 2024 - 16B
Tech Briefs Magazine - May 2024 - 16C
Tech Briefs Magazine - May 2024 - 16D
Tech Briefs Magazine - May 2024 - 17
Tech Briefs Magazine - May 2024 - 18
Tech Briefs Magazine - May 2024 - 19
Tech Briefs Magazine - May 2024 - 20
Tech Briefs Magazine - May 2024 - 21
Tech Briefs Magazine - May 2024 - 22
Tech Briefs Magazine - May 2024 - 23
Tech Briefs Magazine - May 2024 - 24
Tech Briefs Magazine - May 2024 - 25
Tech Briefs Magazine - May 2024 - 26
Tech Briefs Magazine - May 2024 - 27
Tech Briefs Magazine - May 2024 - 28
Tech Briefs Magazine - May 2024 - 29
Tech Briefs Magazine - May 2024 - 30
Tech Briefs Magazine - May 2024 - 31
Tech Briefs Magazine - May 2024 - 32
Tech Briefs Magazine - May 2024 - 33
Tech Briefs Magazine - May 2024 - 34
Tech Briefs Magazine - May 2024 - 35
Tech Briefs Magazine - May 2024 - 36
Tech Briefs Magazine - May 2024 - 37
Tech Briefs Magazine - May 2024 - 38
Tech Briefs Magazine - May 2024 - 39
Tech Briefs Magazine - May 2024 - 40
Tech Briefs Magazine - May 2024 - Cov3
Tech Briefs Magazine - May 2024 - Cov4
Tech Briefs Magazine - May 2024 - PIT-Cov1
Tech Briefs Magazine - May 2024 - PIT-Cov2
Tech Briefs Magazine - May 2024 - PIT-1
Tech Briefs Magazine - May 2024 - PIT-2
Tech Briefs Magazine - May 2024 - PIT-3
Tech Briefs Magazine - May 2024 - PIT-4
Tech Briefs Magazine - May 2024 - PIT-5
Tech Briefs Magazine - May 2024 - PIT-6
Tech Briefs Magazine - May 2024 - PIT-7
Tech Briefs Magazine - May 2024 - PIT-8
Tech Briefs Magazine - May 2024 - PIT-9
Tech Briefs Magazine - May 2024 - PIT-10
Tech Briefs Magazine - May 2024 - PIT-11
Tech Briefs Magazine - May 2024 - PIT-12
Tech Briefs Magazine - May 2024 - PIT-13
Tech Briefs Magazine - May 2024 - PIT-14
Tech Briefs Magazine - May 2024 - PIT-15
Tech Briefs Magazine - May 2024 - PIT-16
Tech Briefs Magazine - May 2024 - PIT-17
Tech Briefs Magazine - May 2024 - PIT-18
Tech Briefs Magazine - May 2024 - PIT-19
Tech Briefs Magazine - May 2024 - PIT-20
Tech Briefs Magazine - May 2024 - PIT-21
Tech Briefs Magazine - May 2024 - PIT-22
Tech Briefs Magazine - May 2024 - PIT-23
Tech Briefs Magazine - May 2024 - PIT-24
Tech Briefs Magazine - May 2024 - PIT-Cov3
Tech Briefs Magazine - May 2024 - PIT-Cov4
Tech Briefs Magazine - May 2024 - Sensor-Cov1
Tech Briefs Magazine - May 2024 - Sensor-Cov2
Tech Briefs Magazine - May 2024 - Sensor-1
Tech Briefs Magazine - May 2024 - Sensor-2
Tech Briefs Magazine - May 2024 - Sensor-3
Tech Briefs Magazine - May 2024 - Sensor-4
Tech Briefs Magazine - May 2024 - Sensor-5
Tech Briefs Magazine - May 2024 - Sensor-6
Tech Briefs Magazine - May 2024 - Sensor-7
Tech Briefs Magazine - May 2024 - Sensor-8
Tech Briefs Magazine - May 2024 - Sensor-9
Tech Briefs Magazine - May 2024 - Sensor-10
Tech Briefs Magazine - May 2024 - Sensor-11
Tech Briefs Magazine - May 2024 - Sensor-12
Tech Briefs Magazine - May 2024 - Sensor-13
Tech Briefs Magazine - May 2024 - Sensor-14
Tech Briefs Magazine - May 2024 - Sensor-15
Tech Briefs Magazine - May 2024 - Sensor-16
Tech Briefs Magazine - May 2024 - Sensor-17
Tech Briefs Magazine - May 2024 - Sensor-18
Tech Briefs Magazine - May 2024 - Sensor-19
Tech Briefs Magazine - May 2024 - Sensor-20
Tech Briefs Magazine - May 2024 - Sensor-21
Tech Briefs Magazine - May 2024 - Sensor-22
Tech Briefs Magazine - May 2024 - Sensor-23
Tech Briefs Magazine - May 2024 - Sensor-24
Tech Briefs Magazine - May 2024 - Sensor-25
Tech Briefs Magazine - May 2024 - Sensor-26
Tech Briefs Magazine - May 2024 - Sensor-27
Tech Briefs Magazine - May 2024 - Sensor-28
Tech Briefs Magazine - May 2024 - Sensor-29
Tech Briefs Magazine - May 2024 - Sensor-Cov4
https://www.nxtbook.com/smg/techbriefs/25TB01
https://www.nxtbook.com/smg/techbriefs/24TB12
https://www.nxtbook.com/smg/techbriefs/24TB11
https://www.nxtbook.com/smg/techbriefs/24TB10
https://www.nxtbook.com/smg/techbriefs/24TB09B
https://www.nxtbook.com/smg/techbriefs/24TB09
https://www.nxtbook.com/smg/techbriefs/24TB08
https://www.nxtbook.com/smg/techbriefs/24TB07
https://www.nxtbook.com/smg/techbriefs/24TB06
https://www.nxtbook.com/smg/techbriefs/24TB05B
https://www.nxtbook.com/smg/techbriefs/24TB05
https://www.nxtbook.com/smg/techbriefs/24TB04
https://www.nxtbook.com/smg/techbriefs/24TB03
https://www.nxtbook.com/smg/techbriefs/24TB02
https://www.nxtbook.com/smg/techbriefs/24TB01
https://www.nxtbook.com/smg/techbriefs/23TB12
https://www.nxtbook.com/smg/techbriefs/23TB11
https://www.nxtbook.com/smg/techbriefs/23TB10
https://www.nxtbook.com/smg/techbriefs/23TB09
https://www.nxtbook.com/smg/techbriefs/23TB08
https://www.nxtbook.com/smg/techbriefs/23TB07
https://www.nxtbook.com/smg/techbriefs/23TB06
https://www.nxtbook.com/smg/techbriefs/23TB05
https://www.nxtbook.com/smg/techbriefs/23TB04
https://www.nxtbook.com/smg/techbriefs/23TB03
https://www.nxtbook.com/smg/techbriefs/23TB02
https://www.nxtbook.com/smg/techbriefs/23TB01
https://www.nxtbook.com/smg/Testing/22TB12
https://www.nxtbook.com/smg/techbriefs/22TB12
https://www.nxtbook.com/smg/techbriefs/22TB11
https://www.nxtbook.com/smg/techbriefs/22TB10
https://www.nxtbook.com/smg/techbriefs/22TB09
https://www.nxtbook.com/smg/techbriefs/22TB08
https://www.nxtbook.com/smg/techbriefs/22TB07
https://www.nxtbook.com/smg/techbriefs/22TB06
https://www.nxtbook.com/smg/techbriefs/22TB05-P
https://www.nxtbook.com/smg/techbriefs/22TB05-D
https://www.nxtbook.com/smg/techbriefs/22TB04
https://www.nxtbook.com/smg/techbriefs/22TB03
https://www.nxtbook.com/smg/techbriefs/22TB02
https://www.nxtbook.com/smg/techbriefs/22TB01
https://www.nxtbook.com/smg/techbriefs/21TB12
https://www.nxtbook.com/smg/techbriefs/21TB11
https://www.nxtbook.com/smg/techbriefs/21TB10
https://www.nxtbook.com/smg/techbriefs/21TB09
https://www.nxtbook.com/smg/techbriefs/21TB08
https://www.nxtbook.com/smg/techbriefs/21TB07
https://www.nxtbook.com/smg/techbriefs/21TB06
https://www.nxtbook.com/smg/techbriefs/21TB05
https://www.nxtbook.com/smg/techbriefs/21TB04
https://www.nxtbook.com/smg/techbriefs/21BT03
https://www.nxtbook.com/smg/techbriefs/21TB02
https://www.nxtbookmedia.com